This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273890 #7 Feb 16 2025 08:33:36 %S A273890 192,234,300,432,714,768,936,1134,1200,1254,1344,1674,1728,1764,1890, %T A273890 1938,2046,2106,2226,2310,2352,2700,2856,2886,3072,3120,3234,3744, %U A273890 3888,3990,4092,4212,4368,4536,4674,4800,4914,5016,5292,5376,5760,5850,6006,6270,6426 %N A273890 Integer area A of the cyclic quadrilaterals such that A, the sides and the two diagonals are integers. %C A273890 The areas of the primitive cyclic quadrilaterals of this sequence are in A273691. %C A273890 This sequence contains A233315 (768, 936, 1200,...). %C A273890 In Euclidean geometry, a cyclic quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed, and the vertices are said to be concyclic. %C A273890 The area A of a cyclic quadrilateral with sides a, b, c, d is given by Brahmagupta’s formula : A = sqrt((s - a)(s -b)(s - c)(s - d)) where s, the semiperimeter is s= (a+b+c+d)/2. %C A273890 In a cyclic quadrilateral with successive vertices A, B, C, D and sides a = AB, b = BC, c = CD, and d = DA, the lengths of the diagonals p = AC and q = BD can be expressed in terms of the sides as %C A273890 p = sqrt((ac+bd)(ad+bc)/(ab+cd)) and q = sqrt((ac+bd)(ab+cd)/(ad+bc)). %C A273890 The circumradius R (the radius of the circumcircle) is given by : %C A273890 R = sqrt((ab+cd)(ac+bd)(ad+bc))/4A. %C A273890 The corresponding sides of a(n) are not unique, for example for a(6) = 768 => (a,b,c,d) = (25, 25, 25, 39) or (a,b,c,d) = (14, 30, 30, 50). %C A273890 The following table gives the first values (A, a, b, c, d, p, q, R) where A is the integer area, a, b, c, d are the integer sides of the cyclic quadrilateral, p, q are the integer diagonals, and R . %C A273890 +--------+-------+-------+-------+--------+-------+------+-------+ %C A273890 | A | a | b | c | d | p | q | R | %C A273890 +--------+-------+-------+-------+--------+-------+------+-------+ %C A273890 | 192 | 7 | 15 | 15 | 25 | 20 | 24 | 25/2 | %C A273890 | 234 | 7 | 15 | 20 | 24 | 20 | 25 | 25/2 | %C A273890 | 300 | 15 | 15 | 20 | 20 | 24 | 25 | 25/2 | %C A273890 | 432 | 11 | 25 | 25 | 25 | 30 | 30 | 125/8 | %C A273890 | 714 | 16 | 25 | 33 | 60 | 39 | 52 | 65/2 | %C A273890 | 768 | 25 | 25 | 25 | 39 | 40 | 40 | 125/6 | %C A273890 | 768 | 14 | 30 | 30 | 50 | 40 | 48 | 25 | %C A273890 | 936 | 14 | 30 | 40 | 48 | 40 | 50 | 25 | %C A273890 | 1134 | 16 | 25 | 52 | 65 | 39 | 63 | 65/2 | %C A273890 | 1200 | 30 | 30 | 40 | 40 | 48 | 50 | 25 | %C A273890 | 1254 | 16 | 25 | 60 | 63 | 39 | 65 | 65/2 | %C A273890 | 1344 | 25 | 33 | 39 | 65 | 52 | 60 | 65/2 | %C A273890 .................................................................. %H A273890 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CyclicQuadrilateral.html">Cyclic Quadrilateral</a> %e A273890 192 is in the sequence because, for (a,b,c,d) = (7,15,15,25) we find: %e A273890 s = (7+15+15+25)/2 = 31; %e A273890 A = sqrt((31-7)(31-15)(31-15)(31-25)) = 192; %e A273890 p = sqrt((7*15+15*25)*(7*25+15*15)/(7*15+15*25)) = 20; %e A273890 q = sqrt((7*15+15*25)*(7*15+15*25)/(7*25+15*15)) = 24. %t A273890 nn=200; lst={}; Do[s=(a+b+c+d)/2; If[IntegerQ[s], area2=(s-a)*(s-b)*(s-c)*(s-d); d1=Sqrt[(a*c+b*d)*(a*d+b*c)/(a*b+c*d)];d2=Sqrt[(a*c+b*d)*(a*b+c*d)/(a*d+b*c)];If[0<area2 && IntegerQ[Sqrt[area2]] && IntegerQ[d1]&& IntegerQ[d2], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}, {d, c}]; Union[lst] %Y A273890 Cf. A210250, A218431, A219225, A230136, A233315, A242778, A273691. %K A273890 nonn %O A273890 1,1 %A A273890 _Michel Lagneau_, Jun 02 2016