cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273898 Sum of the abscissae of the first descents of all bargraphs of semiperimeter n (n>=2).

This page as a plain text file.
%I A273898 #26 Jul 24 2022 12:30:16
%S A273898 1,3,9,27,81,244,739,2251,6895,21232,65703,204245,637573,1997892,
%T A273898 6282635,19820580,62716923,198997349,633015543,2018391204,6449819095,
%U A273898 20652628601,66256638509,212939343591,685497649231,2210217592624,7136781993563,23076554161563
%N A273898 Sum of the abscissae of the first descents of all bargraphs of semiperimeter n (n>=2).
%C A273898 A descent in a bargraph is a maximal sequence of adjacent down steps.
%H A273898 Alois P. Heinz, <a href="/A273898/b273898.txt">Table of n, a(n) for n = 2..1000</a>
%H A273898 M. Bousquet-Mélou and A. Rechnitzer, <a href="http://dx.doi.org/10.1016/S0196-8858(02)00553-5">The site-perimeter of bargraphs</a>, Adv. in Appl. Math. 31 (2003), 86-112.
%H A273898 Emeric Deutsch, S Elizalde, <a href="http://arxiv.org/abs/1609.00088">Statistics on bargraphs viewed as cornerless Motzkin paths</a>, arXiv preprint arXiv:1609.00088, 2016
%F A273898 G.f.:  g(z)=(1-4z+3z^2-(1-2z)Q)/(2z^3), where Q = sqrt(1-4z+2z^2+z^4).
%F A273898 a(n) = Sum(k*A273897(n,k), k>=1).
%F A273898 a(n) = A082582(n+2)-2*A082582(n+1).
%F A273898 D-finite with recurrence (n+3)*a(n) +2*(-3*n-4)*a(n-1) +2*(5*n-2)*a(n-2) +4*(-n+2)*a(n-3) +(n-3)*a(n-4) +2*(-n+5)*a(n-5)=0. - _R. J. Mathar_, Jul 24 2022
%e A273898 a(4)=9 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and the corresponding pictures give the values 3,2,1,2,1 for the abscissae of their first descents.
%p A273898 g := ((1-4*z+3*z^2-(1-2*z)*Q)*(1/2))/z^3: Q := sqrt(1-4*z+2*z^2+z^4): gser := series(g,z = 0,40): seq(coeff(gser, z, n), n = 2 .. 35);
%p A273898 # second Maple program:
%p A273898 a:= proc(n) option remember; `if`(n<4, [0$2, 1, 3][n+1],
%p A273898      ((2*(14*n^2+6+13*n))*a(n-1)-(2*(7*n^2-6-4*n))*a(n-2)
%p A273898      +12*a(n-3) -(n-4)*(3+7*n)*a(n-4))/((n+3)*(7*n-4)))
%p A273898     end:
%p A273898 seq(a(n), n=2..40);  # _Alois P. Heinz_, Jun 07 2016
%t A273898 a[n_] := a[n] = If[n<4, {0, 0, 1, 3}[[n+1]], ((2*(14*n^2+6+13*n))*a[n-1] - (2*(7*n^2-6-4*n))*a[n-2] + 12*a[n-3] - (n-4)*(3+7*n)*a[n-4])/((n+3)*(7*n - 4))]; Table[a[n], {n, 2, 40}] (* _Jean-François Alcover_, Dec 02 2016 after _Alois P. Heinz_ *)
%Y A273898 Cf. A082582, A273897.
%K A273898 nonn
%O A273898 2,2
%A A273898 _Emeric Deutsch_, Jun 06 2016