A273924 Numbers k such that (7*10^k - 13)/3 is prime.
1, 2, 5, 6, 28, 53, 56, 86, 88, 90, 96, 136, 142, 186, 202, 373, 448, 785, 988, 1263, 1966, 3561, 4768, 9658, 9831, 17797, 42286, 49893, 98007, 129472, 146860
Offset: 1
Examples
5 is in this sequence because (7*10^5 - 13)/3 = 233329 is prime. Initial terms and associated primes: a(1) = 1, 19; a(2) = 2, 229; a(3) = 5, 233329; a(4) = 6, 2333329; a(5) = 28, 23333333333333333333333333329, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 23w29.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(7*10^# - 13)/3] &]
-
PARI
is(n)=ispseudoprime((7*10^n - 13)/3) \\ Charles R Greathouse IV, Jun 08 2016
Extensions
a(30)-a(31) from Robert Price, Jul 13 2018
Comments