cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273931 Amicable 5-tuples: (x1,...,x5) such that sigma(x1)=...=sigma(x5)=x1+...+x5, x1 Sequence gives x3 numbers.

This page as a plain text file.
%I A273931 #19 Feb 16 2025 08:33:36
%S A273931 59999219280,69626138400,73605331800,89398663200,89398663200,
%T A273931 90391981680,94320626400,94832992800,103169959200
%N A273931 Amicable 5-tuples: (x1,...,x5) such that sigma(x1)=...=sigma(x5)=x1+...+x5, x1<x2<x3<x4<x5. Sequence gives x3 numbers.
%C A273931 The 5-tuple starting with 53542288800 was given by Donovan Johnson. The common value of sigma(x) is 294821130240.
%C A273931 A larger 5-tuple, (55766707476480, 56992185169920, 57515254917120, 57754372515840, 57829096765440), was found by Michel Marcus on Dec 09 2013. The common value of sigma(x) is 285857616844800.
%C A273931 A still larger example (227491164588441600, 228507506351308800, 229862628701798400, 230878970464665600, 243752632794316800), probably the first one to be published, had been found by Yasutoshi Kohmoto in 2008, cf. link to SeqFan post.
%C A273931 Other terms from John Cerkan.
%C A273931 There are different definitions for amicable k-tuples, cf. link to MathWorld.
%H A273931 John Cerkan, <a href="/A273931/a273931.txt">More terms, with gaps.</a>
%H A273931 Yasutoshi Kohmoto, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2008-November/000217.html">Sigma(x)=Sigma(y)=Sigma(z)=Sigma(u)=Sigma(v)=x+y+z+u+v</a>, SeqFan list, Nov 23 2008
%H A273931 Yasutoshi Kohmoto, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2013-December/012089.html">Sigma(x)=Sigma(y)=Sigma(z)=Sigma(u)=Sigma(v)=x+y+z+u+v</a>, SeqFan list, Dec 09 2013
%H A273931 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AmicableTriple.html">Amicable Triple</a>.
%Y A273931 Cf. A233553, A273928, A273930, A273933, A273934, A273936 (5-tuples).
%Y A273931 Cf. A036471 - A036474 and A116148 (quadruples).
%Y A273931 Cf. A125490 - A125492 and A137231 (triples).
%K A273931 nonn,more
%O A273931 1,1
%A A273931 _John Cerkan_, Jun 04 2016