This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273950 #15 Apr 03 2023 10:36:13 %S A273950 5,13,17,29,89,97,233,257,769,36097,40961,65537,81281,153953,163841, %T A273950 260753,1724417,4550657,5767169,8253953,11304961,13631489,21495809, %U A273950 69619841,77651969,147849217,158334977,159522817,1711276033,6528575489,27286044673,52613349377 %N A273950 Prime factors of generalized Fermat numbers of the form 12^(2^m) + 1 with m >= 0. %C A273950 Primes p such that the multiplicative order of 12 (mod p) is a power of 2. %D A273950 Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269. %H A273950 Arkadiusz Wesolowski, <a href="/A273950/b273950.txt">Table of n, a(n) for n = 1..44</a> %H A273950 Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-98-00891-6">Factors of generalized Fermat numbers</a>, Math. Comp. 67 (1998), no. 221, pp. 441-446. %H A273950 Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-05-01816-8">Table errata to “Factors of generalized Fermat numbers”</a>, Math. Comp. 74 (2005), no. 252, p. 2099. %H A273950 Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-10-02371-9">Table errata 2 to "Factors of generalized Fermat numbers"</a>, Math. Comp. 80 (2011), pp. 1865-1866. %H A273950 C. K. Caldwell, Top Twenty page, <a href="https://t5k.org/top20/page.php?id=11">Generalized Fermat Divisors (base=12)</a> %H A273950 Harvey Dubner and Wilfrid Keller, <a href="http://dx.doi.org/10.1090/S0025-5718-1995-1270618-1">Factors of Generalized Fermat Numbers</a>, Math. Comp. 64 (1995), no. 209, pp. 397-405. %H A273950 OEIS Wiki, <a href="/wiki/Generalized_Fermat_numbers">Generalized Fermat numbers</a> %t A273950 Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[12, #]] &] %Y A273950 Cf. A023394, A072982, A152585, A268660, A268664, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273948 (base 7), A273949 (base 11). %K A273950 nonn %O A273950 1,1 %A A273950 _Arkadiusz Wesolowski_, Jun 05 2016