cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273984 Decimal expansion of the odd Bessel moment s(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

This page as a plain text file.
%I A273984 #13 Oct 23 2023 09:34:12
%S A273984 1,0,7,1,2,8,5,0,5,5,4,2,1,8,0,7,6,5,8,5,1,8,7,1,1,9,7,8,0,3,0,8,1,7,
%T A273984 1,6,0,7,6,3,1,7,9,7,7,7,1,6,7,0,5,6,2,1,7,0,2,4,6,9,3,6,5,9,9,5,0,1,
%U A273984 8,3,8,7,1,4,9,3,0,6,4,0,8,7,9,9,6,2,7,2,3,0,0,0,9,3,7,4,3,0,9,6,7,6,6,9,9
%N A273984 Decimal expansion of the odd Bessel moment s(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
%H A273984 David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008, page 21.
%F A273984 s(5,1) = Integral_{0..inf} x*BesselI_0(x)*BesselK_0(x)^4 dx.
%F A273984 Equals Pi^2 C (conjectural, where C is A273959).
%e A273984 1.07128505542180765851871197803081716076317977716705621702469365995...
%t A273984 s[5, 1] = NIntegrate[x*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 105];
%t A273984 RealDigits[s[5, 1]][[1]]
%o A273984 (PARI) intnumosc(x=0,x*besseli(0,x)*besselk(0,x)^4,Pi) \\ _Charles R Greathouse IV_, Oct 23 2023
%Y A273984 Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273985 (s(5,3)), A273986 (s(5,5)).
%K A273984 nonn,cons
%O A273984 1,3
%A A273984 _Jean-François Alcover_, Jun 06 2016
%E A273984 Offset corrected by _Rick L. Shepherd_, Jun 07 2016