This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273984 #13 Oct 23 2023 09:34:12 %S A273984 1,0,7,1,2,8,5,0,5,5,4,2,1,8,0,7,6,5,8,5,1,8,7,1,1,9,7,8,0,3,0,8,1,7, %T A273984 1,6,0,7,6,3,1,7,9,7,7,7,1,6,7,0,5,6,2,1,7,0,2,4,6,9,3,6,5,9,9,5,0,1, %U A273984 8,3,8,7,1,4,9,3,0,6,4,0,8,7,9,9,6,2,7,2,3,0,0,0,9,3,7,4,3,0,9,6,7,6,6,9,9 %N A273984 Decimal expansion of the odd Bessel moment s(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments). %H A273984 David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008, page 21. %F A273984 s(5,1) = Integral_{0..inf} x*BesselI_0(x)*BesselK_0(x)^4 dx. %F A273984 Equals Pi^2 C (conjectural, where C is A273959). %e A273984 1.07128505542180765851871197803081716076317977716705621702469365995... %t A273984 s[5, 1] = NIntegrate[x*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 105]; %t A273984 RealDigits[s[5, 1]][[1]] %o A273984 (PARI) intnumosc(x=0,x*besseli(0,x)*besselk(0,x)^4,Pi) \\ _Charles R Greathouse IV_, Oct 23 2023 %Y A273984 Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273985 (s(5,3)), A273986 (s(5,5)). %K A273984 nonn,cons %O A273984 1,3 %A A273984 _Jean-François Alcover_, Jun 06 2016 %E A273984 Offset corrected by _Rick L. Shepherd_, Jun 07 2016