cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273985 Decimal expansion of the odd Bessel moment s(5,3) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

This page as a plain text file.
%I A273985 #5 Jun 06 2016 05:42:43
%S A273985 0,8,5,9,3,7,2,9,0,6,9,1,7,6,8,4,5,2,4,2,3,8,4,1,7,4,5,7,8,7,6,4,6,9,
%T A273985 5,8,0,3,3,7,8,7,3,7,7,9,1,3,0,6,4,9,8,0,6,4,3,1,6,8,4,6,6,9,6,3,7,5,
%U A273985 7,9,0,7,5,2,2,9,7,2,3,0,2,5,5,5,6,5,1,6,0,0,9,8,3,3,8,1,9,3,1,2,4,6,7,7
%N A273985 Decimal expansion of the odd Bessel moment s(5,3) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
%H A273985 David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891, page 21.
%F A273985 s(5,3) = Integral_{0..inf} x^3*BesselI_0(x)*BesselK_0(x)^4 dx.
%F A273985 Equals Pi^2 (2/15)^2 (13 C - 1/(10 C)) (conjectural, where C is A273959).
%e A273985 0.0859372906917684524238417457876469580337873779130649806431684669637579...
%t A273985 s[5, 3] = NIntegrate[x^3*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 103];
%t A273985 Join[{0}, RealDigits[s[5, 3]][[1]]]
%Y A273985 Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273986 (s(5,5)).
%K A273985 nonn,cons
%O A273985 0,2
%A A273985 _Jean-François Alcover_, Jun 06 2016