cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273986 Decimal expansion of the odd Bessel moment s(5,5) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

This page as a plain text file.
%I A273986 #5 Jun 06 2016 05:42:53
%S A273986 0,5,4,5,1,4,2,5,3,1,3,2,7,6,1,8,8,0,3,6,3,0,3,3,9,1,9,8,0,2,0,0,9,5,
%T A273986 9,6,8,7,7,6,1,4,3,4,9,5,4,4,5,7,5,9,1,3,6,4,9,9,4,0,2,6,4,6,3,4,0,8,
%U A273986 5,7,9,9,3,6,3,3,0,3,5,4,6,1,0,5,5,1,5,7,3,8,2,8,2,4,7,0,9,0,6,1,3,3,1,6
%N A273986 Decimal expansion of the odd Bessel moment s(5,5) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
%H A273986 David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891, page 21.
%F A273986 s(5,5) = Integral_{0..inf} x^5*BesselI_0(x)*BesselK_0(x)^4 dx.
%F A273986 Equals Pi^2 (4/15)^3 (43 C - 19/(40 C)) (conjectural, where C is A273959).
%e A273986 0.054514253132761880363033919802009596877614349544575913649940264634...
%t A273986 s[5, 5] = NIntegrate[x^5*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 103];
%t A273986 Join[{0}, RealDigits[s[5, 5]][[1]]]
%Y A273986 Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)).
%K A273986 nonn,cons
%O A273986 0,2
%A A273986 _Jean-François Alcover_, Jun 06 2016