cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273989 Decimal expansion of the odd Bessel moment t(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

This page as a plain text file.
%I A273989 #14 Jan 06 2017 08:38:50
%S A273989 6,6,0,3,4,4,8,6,9,0,1,8,6,7,2,3,5,7,8,3,7,2,6,6,8,3,1,7,0,5,9,9,4,2,
%T A273989 6,3,8,5,4,2,4,1,9,9,1,6,9,6,8,7,3,8,5,8,3,0,0,8,0,3,5,8,7,5,5,3,8,9,
%U A273989 4,9,5,8,6,8,3,7,9,9,4,4,5,4,1,0,9,8,1,0,7,2,0,1,2,1,7,5,3,2,7,6,8,4,2,4,3
%N A273989 Decimal expansion of the odd Bessel moment t(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
%H A273989 David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008, page 21.
%F A273989 Integral_{0..inf} x*BesselI_0(x)^2*BesselK_0(x)^3.
%F A273989 Equals 4(7 - 4*sqrt(3)) EllipticK(1 - 32/(16 + 7*sqrt(3) - sqrt(15))) EllipticK(1 - 32/(16 + 7*sqrt(3) + sqrt(15))).
%e A273989 0.660344869018672357837266831705994263854241991696873858300803587553894...
%t A273989 t[5, 1] = NIntegrate[x*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 105]; RealDigits[t[5, 1]][[1]]
%t A273989 (* or: *)
%t A273989 t[5, 1] = 4(7 - 4*Sqrt[3]) EllipticK[1 - 32/(16 + 7*Sqrt[3] - Sqrt[15])] EllipticK[1 - 32/(16 + 7*Sqrt[3] + Sqrt[15])]; RealDigits[t[5, 1], 10, 105][[1]]
%t A273989 RealDigits[EllipticK[(16 - 7 Sqrt[3] - Sqrt[15])/32] EllipticK[(16 - 7 Sqrt[3] + Sqrt[15])/32]/4, 10, 105][[1]] (* _Jan Mangaldan_, Jan 06 2017 *)
%Y A273989 Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)), A273986 (s(5,5)), A273990 (t(5,3)), A273991 (t(5,5)).
%K A273989 cons,nonn
%O A273989 0,1
%A A273989 _Jean-François Alcover_, Jun 06 2016