cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273991 Decimal expansion of the odd Bessel moment t(5,5) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

This page as a plain text file.
%I A273991 #9 Jun 06 2016 11:22:56
%S A273991 1,0,4,3,2,9,7,3,6,7,3,8,6,8,7,1,3,4,4,9,1,8,9,3,1,6,0,7,8,9,4,7,7,1,
%T A273991 2,2,1,7,5,6,6,1,6,3,3,1,2,2,6,9,1,5,5,7,8,8,6,8,8,3,2,5,5,8,9,8,6,6,
%U A273991 2,7,1,0,9,6,4,3,9,2,2,0,2,2,6,7,7,4,2,1,1,5,0,6,3,5,6,8,4,2,6,1,0,8,9
%N A273991 Decimal expansion of the odd Bessel moment t(5,5) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
%H A273991 David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008, page 21.
%F A273991 Integral_{0..inf} x^5*BesselI_0(x)^2*BesselK_0(x)^3.
%F A273991 Conjecture: Equals 76/15 t(5,3) - 16/45 t(5,1).
%e A273991 1.0432973673868713449189316078947712217566163312269155788688325589866...
%t A273991 t[5, 5] = NIntegrate[x^5*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 103];
%t A273991 RealDigits[t[5, 5]][[1]]
%Y A273991 Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)), A273986 (s(5,5)), A273989 (t(5,1)), A273990 (t(5,3)).
%K A273991 nonn,cons
%O A273991 1,3
%A A273991 _Jean-François Alcover_, Jun 06 2016