cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274014 Decimal expansion of the arc length of an ellipse with semi-major axis 1 and eccentricity sin(Pi/12), an arc length which evaluates without using elliptic integrals (a computation due to Ramanujan).

Original entry on oeis.org

6, 1, 7, 6, 6, 0, 1, 9, 8, 7, 6, 5, 8, 6, 9, 3, 4, 6, 4, 7, 4, 5, 6, 8, 4, 0, 8, 4, 1, 0, 7, 3, 7, 4, 4, 1, 7, 5, 7, 5, 3, 7, 2, 3, 4, 3, 4, 6, 9, 6, 1, 2, 5, 1, 0, 2, 9, 1, 1, 4, 4, 1, 9, 2, 2, 5, 4, 1, 1, 3, 1, 0, 3, 2, 7, 8, 6, 3, 0, 1, 9, 0, 0, 3, 0, 5, 9, 1, 8, 7, 3, 8, 6, 0, 1, 5, 4, 3, 2, 9, 3, 4, 3
Offset: 1

Views

Author

Jean-François Alcover, Jun 10 2016

Keywords

Examples

			6.176601987658693464745684084107374417575372343469612510291144192254...
		

References

  • Richard E. Crandall, Projects in Scientific Computation, Springer, 1994; see p. 48.

Crossrefs

Cf. A019824.

Programs

  • Mathematica
    p = Sqrt[Pi/Sqrt[3]]*((1 + 1/Sqrt[3])*Gamma[1/3]/Gamma[5/6] + 2*Gamma[5/6]/ Gamma[1/3]);
    RealDigits[p, 10, 103][[1]]
  • PARI
    sqrt(Pi/sqrt(3))*((1 + 1/sqrt(3))*gamma(1/3)/gamma(5/6) + 2*gamma(5/6)/gamma(1/3)) \\ _G. C. Greubel, Jun 05 2017

Formula

Equals (2*((6 + sqrt(3) + 4*sqrt(2 + sqrt(3)))*E((-2 + sqrt(2 + sqrt(3)))^2/(2 + sqrt(2 + sqrt(3)))^2) - 4*sqrt(2 + sqrt(3))*K((-2 + sqrt(2 + sqrt(3)))^2/ (2 + sqrt(2 + sqrt(3)))^2)))/(2 + sqrt(2 + sqrt(3))), where K and E are the elliptic integrals of first and second kind.
Equals sqrt(Pi/sqrt(3))*(((1 + 1/sqrt(3))*Gamma(1/3))/Gamma(5/6) + (2*Gamma(5/6))/Gamma(1/3)).