This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274018 #43 Jun 24 2018 18:34:05 %S A274018 1,3,6,10,21,42,103,237,603,1519,3942,10257,27131,71940,192462,516933, %T A274018 1395636,3781356,10283911,28050600,76732047,210414811,578330649, %U A274018 1592821005,4395261552,12149386569,33637309323,93267459520,258961863288,719938597227,2003881480452,5583818718102,15575529493713 %N A274018 Number of n-bead ternary necklaces (no turning over allowed) that avoid the subsequence 110. %C A274018 The pattern in this enumeration must be contiguous (all three values next to each other in one sequence of three letters). %H A274018 Math Stackexchange, Marko Riedel et al., <a href="http://math.stackexchange.com/questions/1812920/">Counting circular sequences</a>. %H A274018 Marko Riedel, <a href="/A274017/a274017.maple.txt">Maple code for this sequence</a>. %F A274018 G.f.: 1 - Sum_{n>=1} (phi(n)/n)*log(x^(3*n) - q*x^n + 1), where q=3 is the number of symbols in the alphabet we are using. - _Petros Hadjicostas_, Sep 12 2017 %F A274018 a(n) = (1/n)*Sum_{d|n} phi(n/d)*A215885(d) for n >= 1. - _Petros Hadjicostas_, Sep 13 2017 %e A274018 The necklace %e A274018 1--1 %e A274018 / \ %e A274018 0 0 %e A274018 | | %e A274018 1 2 %e A274018 \ / %e A274018 0--0 %e A274018 contains one instance of the subsequence starting in the upper left corner. Unlike a bracelet, the necklace is oriented. %Y A274018 Cf. A000031, A274017, A274019, A274020. %K A274018 nonn %O A274018 0,2 %A A274018 _Marko Riedel_, Jun 06 2016