A274049 Numbers k such that sum of anti-divisors of k is palindromic.
1, 2, 3, 4, 5, 6, 8, 9, 21, 40, 42, 53, 76, 84, 127, 137, 143, 150, 163, 173, 177, 199, 208, 211, 229, 236, 242, 249, 252, 255, 273, 277, 288, 289, 298, 316, 320, 321, 323, 329, 332, 334, 335, 336, 351, 372, 401, 411, 419, 431, 434, 437, 467, 475, 477, 485, 489, 497
Offset: 1
Examples
Anti-divisors of 150 are 4, 7, 12, 13, 20, 23, 43, 60, 100 and their sum is 282 that is palindromic.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1300
Programs
-
Maple
with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0;for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: P:=proc(q) local a,j,k,n; for n from 1 to q do k:=0; j:=n; while j mod 2 <> 1 do k:=k+1; j:=j/2; od; a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2; if T(a)=a then print(n); fi; od; end: P(10^12);
Comments