cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A366762 Numbers whose canonical prime factorization contains only exponents which are congruent to 1 modulo 3.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2023

Keywords

Comments

First differs from A274034 at n = 42, and from A197680 and A361177 at n = 84.
The asymptotic density of this sequence is zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A002117 * A330523 = A253905 * A065465 = 0.644177671086029533405... .

Crossrefs

Similar sequences with exponents of a given form: A000290 (2*k), A268335 (2*k+1), A000578 (3*k), A182120 (3*k+2).

Programs

  • Mathematica
    q[n_] := AllTrue[FactorInteger[n][[;; , 2]], Mod[#, 3] == 1 &]; Select[Range[120], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2]%3 != 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n)^s = zeta(3*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)), for s > 1.

A369210 Numbers k such that the number of divisors of k^2 is a power of 3.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Amiram Eldar, Jan 16 2024

Keywords

Comments

First differs from A197680 at n = 331, from A274034 at n = 42, from A361177 at n = 167, and from A366762 at n = 84.
Equivalently, square roots of the numbers whose number of divisors is a power of 3.
The asymptotic density of this sequence is Product_{p prime} ((1 - 1/p) * Sum_{k>=0} 1/p^((3^k-1)/2)) = 0.64033435998103973346... .

Crossrefs

Programs

  • Mathematica
    pow3q[n_] := n == 3^IntegerExponent[n, 3]; Select[Range[100], pow3q[DivisorSigma[0, #^2]] &]
  • PARI
    ispow3(n) = n == 3^valuation(n, 3);
    is(n) = ispow3(numdiv(n^2));

Formula

Sum_{n>=1} 1/a(n)^2 = Product_{p prime} Sum_{k>=0} 1/p^(3^k-1) = 1.52478035628964060288... .

A273487 Density of numbers without prime exponents in their factorization.

Original entry on oeis.org

6, 5, 0, 4, 4, 5, 6, 0, 8, 4, 2, 1, 9, 1, 2, 6, 9, 1, 3, 9, 0, 4, 4, 4, 3, 6, 1, 1, 0, 4, 6, 5, 9, 6, 4, 5, 5, 7, 7, 0, 1, 0, 2, 9, 6, 9, 2, 2, 0, 5, 4, 9, 7, 6, 0, 2, 0, 1, 9, 3, 5, 8, 8, 5, 5, 5, 2, 3, 4, 2, 8, 6, 9, 1, 6, 8, 2, 1, 3, 6, 7, 7, 4, 9, 3
Offset: 0

Views

Author

Keywords

Examples

			0.6504456084219126913904443611046...
		

Crossrefs

Density of A274034.

Programs

  • Maple
    eser := 1-x^2+x^4 ;
    for pidx from 3 to 100 do
        p := ithprime(pidx) ;
        eser := eser -x^p+x^(p+1) ;
    end do:
    eser := taylor(eser,x=0,p) ;
    gfun[seriestolist](eser) ;
    subsop(1=NULL,%) ;
    L := EULERi(%) ;
    Digits := 180 ;
    x := 1.0 ;
    for i from 2 to nops(L) do
        if op(i,L) <> 0 then
            x := x*evalf(Zeta(i)^op(i,L)) ;
            printf("%.70f\n",x) ;
        fi ;
    end do; # R. J. Mathar, Jul 11 2016
  • PARI
    leps=log(2)*(1-bitprecision(1.))
    f(x)=my(s=0.);forprime(p=2,1-leps/log(x),s+=x^-p);s
    6/Pi^2*prodeuler(p=2,1e6,(1-(1-1/p)*f(p))/(1-1/p^2))

Formula

Prod_{p prime} 1 - (1 - 1/p)*Sum_{q prime} p^-q.
Showing 1-3 of 3 results.