This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274035 #29 Jun 18 2025 11:52:56 %S A274035 2,5,8,9,10,12,15,17,24,26,28,31,33,36,37,40,43,44,46,50,52,54,56,57, %T A274035 63,65,68,69,72,73,76,80,82,89,91,98,100,101,108,113,122,126,127,128, %U A274035 129,134,136,141,145,148,150,152,161,164,168,170,171,174,177,183,185,189,192,196,197 %N A274035 Numbers k such that k^7 = a^2 + b^3 for positive integers a and b. %H A274035 Jean-François Alcover, <a href="/A274035/b274035.txt">Table of n, a(n) for n = 1..3001</a> (all terms from Charles R Greathouse IV except for a(58)=174) %H A274035 Bjorn Poonen, Edward F. Schaefer, and Michael Stoll, <a href="http://arxiv.org/abs/math/0508174">Twists of X(7) and primitive solutions to x^2+y^3=z^7</a>, arXiv:math/0508174 [math.NT], 2005; Duke Math. J. 137:1 (2007), pp. 103-158. %t A274035 okQ[n_] := Module[{a, b}, For[b = 1, b < n^(7/3), b++, If[IntegerQ[a = Sqrt[n^7 - b^3]] && a > 0, Print["n = ", n, ", a = ", a, ", b = ", b]; Return[True]]]; False]; %t A274035 Reap[For[n = 1, n < 200, n++, If[okQ[n], Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Jan 30 2019 *) %o A274035 (PARI) isA055394(n)=for(k=1,sqrtnint(n-1,3),if(issquare(n-k^3),return(1)));0 %o A274035 is(n)=isA055394(n^7) %o A274035 (Sage) # Sage cannot handle n = 123, 174, ... without the fallback, even with descent_second_limit = 1000. %o A274035 def fallback(n): %o A274035 return gp("my(n=" + str(n) + ");for(k=1,sqrtnint(n-1,3),if(issquare(n-k^3),return(1)));0") %o A274035 def isA055394(z): %o A274035 z7 = z^7 %o A274035 E = EllipticCurve([0,z7], descent_second_limit = 1000) %o A274035 try: %o A274035 for c in E.integral_points(): %o A274035 if c[0] < 0 and c[1] != 0: %o A274035 return True %o A274035 return False %o A274035 except RuntimeError: %o A274035 return fallback(z7) %o A274035 [x for x in range(1, 201) if isA055394(x)] %Y A274035 Cf. A055394, A174115. %K A274035 nonn %O A274035 1,1 %A A274035 _Charles R Greathouse IV_, Jun 06 2016 %E A274035 Missing term 174 inserted by _Jean-François Alcover_, Jan 30 2019