A274046 a(n) is the smallest positive integer which can be represented as the sum of distinct positive triangular numbers in exactly n ways, or 0 if no such integer exists.
1, 10, 25, 31, 49, 46, 55, 67, 70, 76, 82, 117, 102, 91, 97, 107, 101, 135, 110, 112, 116, 115, 119, 128, 0, 131, 133, 130, 148, 145, 136, 0, 137, 149, 154, 146, 0, 169, 152, 157, 155, 168, 171, 158, 174, 161, 0, 183, 184, 167, 0, 0, 173, 0, 175, 181, 190
Offset: 1
Keywords
Examples
25 = 1 + 3 + 6 + 15 = 10 + 15 = 1 + 3 + 21. This is the smallest number that can be written as the sum of distinct triangular numbers in three different ways. So a(3)=25. The first null values of a(n) occur for n = 25, 32, 37, 47, 51, 52, 54, 61,... - _Giovanni Resta_, Jun 08 2016
Programs
-
Mathematica
nT[n_, m_: 0] := nT[n,m] = If[n == 0, 1, Block[{t, i=m+1, s=0}, While[(t = i*(i+1)/2) <= n, s += nT[n-t, i]; i++]; s]]; a[n_] := Block[{k=0, t}, While[(t = nT[++k]) != n && t < Max[2*n, 30]]; If[t == n, k, 0]]; Array[a, 57] (* Giovanni Resta, Jun 08 2016 *)
Extensions
a(15)-a(20) from Tom Edgar, Jun 08 2016
a(21)-a(57) from Giovanni Resta, Jun 08 2016
Comments