cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274076 T(n, m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.

Original entry on oeis.org

-2, 2, -2, -4, 8, -20, 2, -58, 14, -70, -4, 16, -344, 112, -28, 4, -556, 1064, -152, 308, -308, -8, 10256, -3368, 4576, -6248, 2288, -1144, 2, -1622, 33398, -98794, 34606, -4862, 2002, -1430, -4, 6688, -187216, 140384, -1242904, 59488, -25168, 77792, -48620
Offset: 1

Views

Author

Bradley Klee, Jun 09 2016

Keywords

Comments

Triangle read by rows ( see examples ). The denominators are given in A274078.
The rational triangle A273506 / A273507 gives the coefficients for an exact solution of the plane pendulum's phase space trajectory. Differential time dependence for this solution also adheres to the simple form of a triangular summation: dt = dQ(-1+ sum k^n * (T(n, m)/A274078(n, m)) * cos(Q)^(2(n+m)) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3...n. Expanding powers of cosine ( Cf. A273496 ) it is relatively easy to integrate dt ( cf. A274130 ). One period of motion takes Q through the range [ 0 , -2 pi]. Integrating dt over this domain gives another (Cf. A273506) calculation of the series expansion for Elliptic K ( see examples and Mathematica function dtToEllK ). For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			The triangle T(n, m) begins:
n/m  1    2     3     4
------------------------------
1  | -2
2  |  2, -2
3  | -4,  8,  -20
4  |  2, -58,  14,  -70
------------------------------
The rational triangle T(n, m) / A274078(n, m) begins:
n/m    1        2         3       4
------------------------------------------
1  | -2/3
2  |  2/15,   -2/3
3  | -4/315,   8/27,   -20/27
4  |  2/2835, -58/945,  14/27,  -70/81
------------------------------------------
dt2(Q) = dQ(-1 - (2/3) cos(Q)^4 k +  ((2/15) cos(Q)^6  - (2/3) cos(Q)^8) k^2 ) + ...
dt2(Q) = dQ(-1 - (1/4) k - (9/64) k^2 + cosine series ) + ...
(2/Pi) K(k) ~ I2 = (1/(2 Pi)) Int dt2(Q) =  1 + (1/4) k + (9/64) k^2+ ...
		

Crossrefs

Denominators: A274078. Phase Space Trajectory: A273506, A273507. Time Dependence: A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    dtCoefficients[n_] :=  With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    dtToEllK[NMax_] := ReplaceAll[-dt[NMax], {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0} ]
    Flatten[Numerator[dtCoefficients[10]]]
    dtToEllK[5]