This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274080 #17 Jun 30 2016 02:02:08 %S A274080 1,1,2,1,2,1,2,3,4,1,3,4,5,1,2,4,2,3,4,5,7,2,3,5,6,7,8,1,3,6,7,8,9,1, %T A274080 2,4,7,3,4,5,7,8,11,1,4,5,6,8,9,11,12,2,5,6,9,10,11,12,13,1,3,6,10,11, %U A274080 12,13,14,1,2,4,7,11,3,5,7,8,11,12,16,2,6,7 %N A274080 Table read by rows: row n gives all numbers less than n in the same row, column, or diagonal as n in the natural numbers read by antidiagonals. %H A274080 Peter Kagey, <a href="/A274080/b274080.txt">Table of n, a(n) for n = 1..10000</a> %e A274080 A000027 read by antidiagonals is: %e A274080 1 2 4 7 %e A274080 3 5 8 %e A274080 6 9 %e A274080 ... %e A274080 Thus: %e A274080 Row 1: [] %e A274080 Row 2: [1] %e A274080 Row 3: [1, 2] %e A274080 Row 4: [1, 2] %e A274080 Row 5: [1, 2, 3, 4] %e A274080 Row 6: [1, 3, 4, 5] %e A274080 Row 7: [1, 2, 4] %e A274080 Row 8: [2, 3, 4, 5, 7] %e A274080 Row 9: [2, 3, 5, 6, 7, 8] %t A274080 nn = 18; t = Table[(n^2 - n)/2 + Accumulate@ Range[n - 1, Ceiling[(Sqrt[9 + 8 nn] - 3)/2]] + 1, {n, Ceiling[(Sqrt[9 + 8 nn] - 3)/2] + 1}]; Table[Function[a, Function[p, Most@ Union@ Flatten@ {Map[a[[#1, #2]] & @@ # &, Most@ NestWhileList[# - 1 &, First@ p, ! MemberQ[#, 0] &]], Range[SelectFirst[Reverse@ Join[{0}, First@ t], n >= # &], n - 1], Transpose[a][[ p[[1, 2]] ]], a[[ p[[1, 1]] ]]}]@ Position[a, n]]@ Array[t[[#1, #2]] &, First@ Position[t, n]], {n, nn}] // Flatten (* _Michael De Vlieger_, Jun 29 2016, Version 10 *) %o A274080 (Haskell) %o A274080 import Data.List (sort, nub) %o A274080 a274080 n = a274080_list !! (n - 1) %o A274080 a274080_list = concatMap a274080_row [1..] %o A274080 a274080_tabf = map a274080_row [1..] %o A274080 a274080_row n = nub $ sort $ concatMap (\f -> f n) [a274079_row, a273825_row, a273824_row, a273823_row] %Y A274080 Cf. A000027, A269526, A273823, A273824, A273825, A274079. %K A274080 nonn,tabf,look %O A274080 1,3 %A A274080 _Peter Kagey_, Jun 09 2016