This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274092 #24 Jun 20 2016 19:37:11 %S A274092 0,0,0,1,1,-1,4,1,-4,9,-1,-9,15,-7,-15,20,-15,-20,23,-28,-23,23,-43, %T A274092 -23,20,-61,-20,11,-80,-11,-2,-100,2,-21,-119,21,-46,-137,46,-76,-151, %U A274092 76,-111,-162,111,-150,-167,150,-194,-167,194,-240,-161,240,-289,-147,289,-339,-125,339,-389,-95,389 %N A274092 a(n) = nearest integer to k^2*sin(sqrt(k)+j*Pi/2) where n = 3*k+j, 0<=j<3. %H A274092 N. J. A. Sloane and Chai Wah Wu, <a href="/A274092/b274092.txt">Table of n, a(n) for n = 0..10000</a> n = 0..1000 from N. J. A. Sloane %p A274092 Digits:=50: %p A274092 ft:=proc(n,t) local k,j; %p A274092 j:=(n mod t); k:=(n-j)/t; %p A274092 round(evalf(k^2*sin(sqrt(k)+j*Pi/2))); %p A274092 end; %p A274092 [seq(ft(n,3),n=0..120)]; %o A274092 (Python) %o A274092 from sympy import sin, sqrt, pi %o A274092 def A274092(n): %o A274092 k, j = divmod(n,3) %o A274092 return int((k**2*sin(sqrt(k)+j*pi/2)).round()) # _Chai Wah Wu_, Jun 10 2016 %Y A274092 Sequences of the same type: A272695, A274086, A274087, A274088, A274090, A274091, A274092, A274095, A274096, A274097, A274101, A274102. %K A274092 sign %O A274092 0,7 %A A274092 _N. J. A. Sloane_, Jun 10 2016