cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274095 Nearest integer to n*sin(sqrt(n)).

This page as a plain text file.
%I A274095 #14 Jun 20 2016 19:37:49
%S A274095 0,1,2,3,4,4,4,3,2,1,0,-2,-4,-6,-8,-10,-12,-14,-16,-18,-19,-21,-22,
%T A274095 -23,-24,-24,-24,-24,-23,-23,-22,-20,-19,-17,-15,-13,-10,-7,-5,-1,2,5,
%U A274095 8,12,15,19,22,25,29,32,35,39,42,45,47,50,52,54,56,58,60,61,62,63,63,64,64,63,63,62,61,60,58,56
%N A274095 Nearest integer to n*sin(sqrt(n)).
%H A274095 Chai Wah Wu, <a href="/A274095/b274095.txt">Table of n, a(n) for n = 0..10000</a>
%p A274095 Digits:=50;
%p A274095 ft:=proc(n,t) local k,j; j:=(n mod t); k:=(n-j)/t;
%p A274095 round(evalf(k*sin(sqrt(k)+j*Pi/2))); end;
%p A274095 [seq(ft(n,1),n=0..120)];
%o A274095 (Python)
%o A274095 from sympy import sin, sqrt, pi
%o A274095 def A274095(n, t = 1):
%o A274095     k, j = divmod(n,t)
%o A274095     return int((k*sin(sqrt(k)+j*pi/2)).round())
%o A274095 A274095_list = [A274095(n,1) for n in range(10001)] # _Chai Wah Wu_, Jun 11 2016
%Y A274095 Sequences of the same type: A272695, A274086, A274087, A274088, A274090, A274091, A274092, A274095, A274096, A274097, A274101, A274102.
%K A274095 sign,look
%O A274095 0,3
%A A274095 _N. J. A. Sloane_, Jun 11 2016