This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274111 #27 Oct 07 2018 03:17:14 %S A274111 1,1,1,1,1,1,2,3,5,7,10,13,20,28,45,65,101,143,222,317,500,726,1143, %T A274111 1661,2608,3796,5983,8764,13835,20335,32089,47251,74637,110227,174302, %U A274111 258095,408276,605664,958551,1424659,2256136,3359446,5322449,7937666,12580545 %N A274111 Number of equivalence classes of ballot paths of length n for the string ddd. %H A274111 Gheorghe Coserea, <a href="/A274111/b274111.txt">Table of n, a(n) for n = 0..300</a> %H A274111 K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, <a href="http://arxiv.org/abs/1510.01952">Equivalence classes of ballot paths modulo strings of length 2 and 3</a>, arXiv:1510.01952 [math.CO], 2015, proposition 3.2. %F A274111 The g.f. satisfies x^2*(1-2*x+x^2-x^4)*A(x)^3 + 2*x*(1-x)^2*A(x)^2 + (1-3*x+x^2)*A(x) - 1 = 0. - _R. J. Mathar_, Jun 20 2016 %t A274111 terms = 45; A[_]=0; Do[A[x_] = (1-2(-1+x)^2 x A[x]^2 + x^2 (-1+2x-x^2+x^4) A[x]^3)/(1-3x+x^2) + O[x]^terms, terms]; CoefficientList[A[x], x] (* _Jean-François Alcover_, Oct 07 2018 *) %o A274111 (PARI) %o A274111 x='x; y='y; %o A274111 Fxy = x^2*(1-2*x+x^2-x^4)*y^3 + 2*x*(1-x)^2*y^2 + (1-3*x+x^2)*y - 1; %o A274111 seq(N) = { %o A274111 my(y0 = 1 + O('x^N), y1=0); %o A274111 for (k = 1, N, %o A274111 y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0); %o A274111 if (y1 == y0, break()); y0 = y1); %o A274111 Vec(y0); %o A274111 }; %o A274111 seq(45) \\ _Gheorghe Coserea_, Jan 05 2017 %Y A274111 Cf. A274110-A274115. %K A274111 nonn,walk %O A274111 0,7 %A A274111 _N. J. A. Sloane_, Jun 17 2016 %E A274111 a(0)=1 prepended by _Gheorghe Coserea_, Jan 05 2017