This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274134 #15 Sep 16 2024 20:31:27 %S A274134 3,7,11,31,43,67,79,127,131,139,167,191,211,223,227,307,331,367,487, %T A274134 523,631,691,743,751,883,971,1039,1087,1399,2063,2083,2143,2179,2239, %U A274134 2267,2287,2347,2411,2423,2503,2531,2543,2591,2687,2731,2803,2819,2927,2939,2963 %N A274134 Primes p such that both ror(p) and rol(p) are also primes, where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left. %C A274134 a(n) mod 4 = 3. %t A274134 Select[Prime@ Range@ 430, And[PrimeQ@ FromDigits[RotateLeft@ #, 2], PrimeQ@ FromDigits[RotateRight@ #, 2]] &@ IntegerDigits[#, 2] &] (* _Michael De Vlieger_, Jun 22 2016 *) %o A274134 (Python) %o A274134 from sympy import isprime %o A274134 for n in range(3, 10000, 2): %o A274134 if not isprime(n): continue %o A274134 BL = len(bin(n))-2 %o A274134 x = (n>>1) + ((n&1) << (BL-1)) # A038572(n) %o A274134 if not isprime(x): continue %o A274134 y = (n*2) - (1<<BL) + 1 # A006257(n) for n>0 %o A274134 if not isprime(y): continue %o A274134 print(str(n), end=', ') %Y A274134 Cf. A000040, A006257, A038572. %K A274134 nonn,base %O A274134 1,1 %A A274134 _Alex Ratushnyak_, Jun 10 2016