This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274136 #31 Oct 24 2020 12:56:34 %S A274136 1,16,540,32256,3024000,410572800,76281004800,18598035456000, %T A274136 5762136335155200,2211729098342400000,1030334000462807040000, %U A274136 572721601599913328640000,374484928188990947328000000,284562454970932936468070400000 %N A274136 a(n) = (n+1)*(2*n+2)!/(n+2). %C A274136 Sequence is inspired by A273889, A274119 and A273983. %C A274136 Since Product_{i=0..n}(i*k+a) - Product_{i=0..n}(-i*k-b) ≡ 0 mod (n*k+a+b), then define B(n,k,a,b) = (Product_{i=0..n}(i*k+a) - Product_{i=0..n}(-i*k-b))/(n*k+a+b), with n*k+a+b <> 0, n >= 0 and k,a,b are integers, such that B(1,n,2,1) = (Product_{i=0..1}(i*n+2) - Product_{i=0..1}(-i*n-1))/(n+3) = A000012(n) with n >= 0; %C A274136 B(3,n,2,1) = (Product_{i=0..3}(i*n+2) - Product_{i=0..3}(-i*n-1))/(3*n+3) = A100040(n+2) with n >= 0; %C A274136 B(2*n+1,0,2,1) = (Product_{i=0..2*n+1}(2) - Product_{i=0..2*n+1}(-1))/3 = A002450(n+1) with n >= 0; %C A274136 B(2*n+1,2,2,1) = (Product_{i=0..2*n+1}(2*i+2) - Product_{i=0..2*n+1}(-2*i-1))/(4*n+5) = A273983(n+1) with n >= 0; %C A274136 and a(n) is B(2*n+1,1,2,1). - _Hong-Chang Wang_, Jun 17 2016 %H A274136 Hong-Chang Wang, <a href="/A274136/b274136.txt">Table of n, a(n) for n = 0..30</a> %H A274136 Hong-Chang Wang, <a href="/A274119/a274119_5.png">Definition of the formula B(n,k,a,b)</a> %F A274136 a(n) = B(2*n+1,1,2,1) = (Product_{i=0..2*n+1}(i+2) - Product_{i=0..2*n+1}(-i-1))/(2*n+4), n >= 0. %F A274136 a(n) = A062779(n)/(2*(n+1)). - _Michel Marcus_, Jun 11 2016 %F A274136 a(n) ~ sqrt(Pi)*exp(-2*n)*(48*n*(24*n + 13) + 1177)*4^(n-2)*n^(2*n+1/2)/9. - _Ilya Gutkovskiy_, Jul 07 2016 %e A274136 a(0) = (2*3 - 1*2)/4 = 1. %e A274136 a(1) = (2*3*4*5 - 1*2*3*4)/6 = 16. %e A274136 a(2) = (2*3*4*5*6*7 - 1*2*3*4*5*6)/8 = 540. %t A274136 a[n_] := (Product[i + 2, {i, 0, 2*n + 1}] - Product[-i - 1, {i, 0, 2*n + 1}])/(2*n + 4); Table[a[n], {n, 0, 10}] (* _G. C. Greubel_, Jun 19 2016 *) %t A274136 Table[((n+1)(2n+2)!)/(n+2),{n,0,30}] (* _Harvey P. Dale_, Oct 24 2020 *) %o A274136 (Python) %o A274136 # subroutine %o A274136 def B (n, k, a, b): %o A274136 pa = pb = 1 %o A274136 for i in range(n+1): %o A274136 pa *= (i*k+a) %o A274136 pb *= (-i*k-b) %o A274136 m = n*k+a+b %o A274136 p = pa-pb %o A274136 if m == 0: %o A274136 return "NaN" %o A274136 else: %o A274136 return p/m %o A274136 # main program %o A274136 for j in range(101): %o A274136 print(str(j)+" "+str(B(2*j+1, 1, 2, 1))) # _Hong-Chang Wang_, Jun 14 2016 %o A274136 (PARI) a(n) = ((2*n+1)!-(2*n)!)/(2*(n+1)) \\ _Felix Fröhlich_, Jun 11 2016 %o A274136 (PARI) a(n) = (prod(i=0, 2*n+1, i+2)-prod(i=0, 2*n+1, -i-1))/(2*n+4) \\ _Felix Fröhlich_, Jul 05 2016 %Y A274136 Cf. A000012, A002450, A062779, A100040, A273889, A273983, A274119. %K A274136 nonn %O A274136 0,2 %A A274136 _Hong-Chang Wang_, Jun 10 2016