This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274142 #27 Jul 04 2016 05:58:04 %S A274142 1,1,1,2,2,4,5,8,11,17,25,37,54,81,119,177,261,388,574,851,1260,1868, %T A274142 2767,4101,6077,9006,13347,19781,29315,43448,64392,95436,141444, %U A274142 209636,310705,460501,682519,1011581,1499295,2222155,3293534,4881472,7235018,10723311,15893460,23556367,34913897,51747400 %N A274142 Number of integers in n-th generation of tree T(1/2) defined in Comments. %C A274142 Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x. %C A274142 Guide to related sequences: %C A274142 r sequence %C A274142 1/2 A274142 %C A274142 1/3 A274143 %C A274142 1/4 A274144 %C A274142 2/3 A274145 %C A274142 3/4 A274146 %C A274142 -1/2 A274147 %C A274142 -1/3 A274148 %C A274142 -1/4 A274149 %C A274142 -2/3 A274150 %C A274142 -3/4 A274151 %C A274142 3/2 A274152 %C A274142 5/2 A274153 %C A274142 -3/2 A274154 %C A274142 -5/2 A274155 %C A274142 2^(1/2) A000045 (Fibonacci numbers) %C A274142 2^(1/3) A000930 %C A274142 2^(1/4) A003269 %C A274142 2^(-1/2) A274156 %C A274142 3^(-1/2) A274157 %C A274142 2^(-1/3) A274158 %C A274142 3^(-1/3) A274159 %C A274142 i A274160 %C A274142 2i A206743 %C A274142 3i A274162 %C A274142 4i A274163 %C A274142 i/2 A274149 %C A274142 i/3 A274165 %C A274142 i+1 A274166 %C A274142 i-1 A274167 %C A274142 (-1+3i)/2 A274168 %H A274142 Kenny Lau, <a href="/A274142/b274142.txt">Table of n, a(n) for n = 0..5847</a> %e A274142 If r = 1/2, then g(3) = {3,2r,r+1, r^2}, in which the integers are 3 and 1, so that a(3) = 2. %t A274142 z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; %t A274142 u = Table[t[[k]] /. x -> 1/2, {k, 1, z}]; %t A274142 Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}] %t A274142 (* second program: *) %t A274142 T[0] = {0}; T[n_] := T[n] = Complement[Join[T[n-1]+1, x*T[n-1]], T[n-1]]; Reap[For[n = 0, n <= 25, n++, cnt = Count[T[n] /. x -> 1/2, _Integer]; Print[n, " ", cnt]; Sow[cnt]]][[2, 1]] (* _Jean-François Alcover_, Jun 14 2016 *) %Y A274142 Cf. A274143-A274160, A274162, A274163, A274165-A274168. %K A274142 nonn %O A274142 0,4 %A A274142 _Clark Kimberling_, Jun 11 2016 %E A274142 More terms from _Jean-François Alcover_, Jun 14 2016 %E A274142 More terms from _Kenny Lau_, Jul 04 2016