This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274143 #16 Jul 04 2016 05:58:25 %S A274143 1,1,1,1,2,2,2,4,4,5,8,9,12,16,20,26,34,44,57,74,97,125,162,212,272, %T A274143 356,462,597,780,1010,1311,1706,2210,2873,3732,4841,6294,8168,10608, %U A274143 13781,17886,23237,30172,39177,50891,66072,85813,111446,144706,187947,244059,316937,411618,534503,694153,901461 %N A274143 Number of integers in n-th generation of tree T(1/3) defined in Comments. %C A274143 Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x. %C A274143 See A274142 for a guide to related sequences. %H A274143 Kenny Lau, <a href="/A274143/b274143.txt">Table of n, a(n) for n = 0..8805</a> %e A274143 For r = 1/3, we have g(3) = {3,2r,r+1, r^2}, in which only 3 is an integer, so that a(3) = 1. %p A274143 A274143 := proc(r) %p A274143 local gs,n,gs2,el,a ; %p A274143 gs := [2,r] ; %p A274143 for n from 3 do %p A274143 gs2 := [] ; %p A274143 for el in gs do %p A274143 gs2 := [op(gs2),el+1,r*el] ; %p A274143 end do: %p A274143 gs := gs2 ; %p A274143 a := 0 ; %p A274143 for el in gs do %p A274143 if type(el,'integer') then %p A274143 a := a+1 : %p A274143 end if; %p A274143 end do: %p A274143 print(n,a) ; %p A274143 end do: %p A274143 end proc: %p A274143 A274143(1/3) ; # _R. J. Mathar_, Jun 17 2016 %t A274143 z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; %t A274143 u = Table[t[[k]] /. x -> 1/3, {k, 1, z}]; %t A274143 Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}] %Y A274143 Cf. A274142. %K A274143 nonn %O A274143 0,5 %A A274143 _Clark Kimberling_, Jun 11 2016 %E A274143 More terms from _Kenny Lau_, Jul 04 2016