This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274147 #14 Jul 04 2016 03:53:23 %S A274147 1,1,1,2,2,4,6,9,13,20,31,48,70,108,165,250,379,575,875,1332,2017, %T A274147 3066,4661,7076,10751,16328,24801,37684,57229,86931,132062,200588, %U A274147 304701,462844,703043,1067955,1622207,2464117,3743047,5685655,8636525,13118942,19927624,30270167,45980452,69844296,106093768 %N A274147 Number of integers in n-th generation of tree T(-1/2) defined in Comments. %C A274147 Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x. %C A274147 See A274142 for a guide to related sequences. %H A274147 Kenny Lau, <a href="/A274147/b274147.txt">Table of n, a(n) for n = 0..5503</a> %e A274147 For r = -1/2, we have g(3) = {3,2r,r+1, r^2}, in which the number of integers is a(3) = 2. %p A274147 A274147 := proc(r) %p A274147 local gs,n,gs2,el,a ; %p A274147 gs := [2,r] ; %p A274147 for n from 3 do %p A274147 gs2 := [] ; %p A274147 for el in gs do %p A274147 gs2 := [op(gs2),el+1,r*el] ; %p A274147 end do: %p A274147 gs := gs2 ; %p A274147 a := 0 ; %p A274147 for el in gs do %p A274147 if type(el,'integer') then %p A274147 a := a+1 : %p A274147 end if; %p A274147 end do: %p A274147 print(n,a) ; %p A274147 end do: %p A274147 end proc: %p A274147 A274147(-1/2) ; # _R. J. Mathar_, Jun 16 2016 %t A274147 z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; %t A274147 u = Table[t[[k]] /. x -> -1/2, {k, 1, z}]; Table[ %t A274147 Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}] (*A274147*) %Y A274147 Cf. A274142. %K A274147 nonn %O A274147 0,4 %A A274147 _Clark Kimberling_, Jun 11 2016 %E A274147 More terms from _Kenny Lau_, Jul 02 2016