A274149 Number of integers in n-th generation of tree T(-1/4) defined in Comments.
1, 1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 17, 22, 29, 38, 51, 68, 90, 119, 158, 209, 277, 368, 489, 648, 858, 1137, 1509, 2002, 2655, 3520, 4667, 6189, 8208, 10885, 14436, 19141, 25382, 33659, 44638, 59195, 78497, 104092, 138036, 183050, 242745, 321904, 426875
Offset: 0
Examples
For r = -1/4, we have g(3) = {3,2r,r+1, r^2}, in which the number of integers is a(3) = 1.
Links
- Kenny Lau, Table of n, a(n) for n = 0..8153
Crossrefs
Cf. A274142.
Programs
-
Mathematica
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; u = Table[t[[k]] /. x -> -1/4, {k, 1, z}]; Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
Formula
a(n-1) = length of row n of the array in A274185.
Extensions
More terms from Kenny Lau, Jul 01 2016
Comments