A274151 Number of integers in n-th generation of tree T(-3/4) defined in Comments.
1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 5, 6, 8, 11, 14, 17, 20, 26, 36, 45, 56, 74, 96, 120, 150, 191, 245, 318, 405, 517, 665, 850, 1073, 1364, 1749, 2233, 2860, 3660, 4678, 5970, 7610, 9691, 12357, 15808, 20190, 25815, 32990, 42127, 53730, 68537, 87474, 111636, 142653, 182214, 232784, 297231, 379421
Offset: 0
Examples
For r = -3/4, we have g(3) = {3,2r,r+1, r^2}, in which the number of integers is a(3) = 1.
Links
- Kenny Lau, Table of n, a(n) for n = 0..9418
Crossrefs
Cf. A274142.
Programs
-
Mathematica
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; u = Table[t[[k]] /. x -> -3/4, {k, 1, z}]; Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
Extensions
More terms from Kenny Lau, Jul 02 2016
Comments