A274156 Number of integers in n-th generation of tree T(2^(-1/2)) defined in Comments.
1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 14, 19, 25, 35, 47, 64, 87, 119, 161, 220, 300, 407, 554, 757, 1028, 1399, 1908, 2598, 3534, 4816, 6560, 8929, 12161, 16567, 22556, 30718, 41843, 56981, 77597, 105693, 143944, 196029, 266991, 363634, 495228, 674481, 918629, 1251106, 1703941, 2320726, 3160713, 4304733
Offset: 0
Examples
If r = 2^(-1/2), then g(3) = {3,2r,r+1, r^2}, in which the number of integers is a(3) = 1.
Links
- Kenny Lau, Table of n, a(n) for n = 0..7448
Crossrefs
Cf. A274142.
Programs
-
Mathematica
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; u = Table[t[[k]] /. x -> 2^(-1/2), {k, 1, z}]; Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
Extensions
More terms from Kenny Lau, Jul 01 2016
Comments