A274158 Number of integers in n-th generation of tree T(2^(-1/3)) defined in Comments.
1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 13, 17, 22, 27, 36, 47, 61, 77, 101, 132, 171, 219, 285, 370, 480, 619, 803, 1042, 1351, 1747, 2264, 2936, 3805, 4927, 6385, 8276, 10725, 13894, 18004, 23333, 30238, 39179, 50770, 65794, 85261, 110483, 143171, 185534, 240432, 311566, 403749, 523216, 678031
Offset: 0
Examples
If r = 2^(-1/3), then g(3) = {3,2r,r+1, r^2}, in which the number of integers is a(3) = 1.
Links
- Kenny Lau, Table of n, a(n) for n = 0..8877
Crossrefs
Cf. A274142.
Programs
-
Mathematica
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; u = Table[t[[k]] /. x -> 2^(-1/3), {k, 1, z}]; Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
Extensions
More terms from Kenny Lau, Jul 04 2016
Comments