A274159 Number of integers in n-th generation of tree T(3^(-1/3)) defined in Comments.
1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7, 9, 11, 12, 16, 18, 23, 28, 33, 41, 49, 61, 72, 89, 107, 130, 159, 191, 234, 283, 345, 418, 507, 617, 747, 910, 1103, 1340, 1629, 1976, 2402, 2914, 3542, 4300, 5223, 6344, 7701, 9359, 11361, 13801, 16761, 20353, 24725, 30021, 36468, 44285, 53788, 65328
Offset: 0
Keywords
Examples
If r = 3^(-1/3), then g(3) = {3,2r,r+1, r^2}, in which the number of integers is a(3) = 1.
Links
- Kenny Lau, Table of n, a(n) for n = 0..11841
Crossrefs
Cf. A274142.
Programs
-
Maple
A274159 := proc(r) local gs, n, gs2, el, a ; gs := [1] ; for n from 2 do gs2 := [] ; for el in gs do gs2 := [op(gs2), el+1, r*el] ; end do: gs := gs2 ; a := 0 ; for el in gs do if type(el, 'integer') then a := a+1 : end if; end do: print(n, a) ; end do: end proc: A274159(1/root[3](3)) ; # R. J. Mathar, Jun 20 2016
-
Mathematica
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; u = Table[t[[k]] /. x -> 3^(-1/3), {k, 1, z}]; Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
Extensions
a(15)-a(18) from R. J. Mathar, Jun 20 2016
More terms from Kenny Lau, Jul 04 2016
Comments