This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274182 #11 Feb 09 2025 18:38:50 %S A274182 15,26,39,158,326,566,789,961,1159,1262,1369,1478,1591,1718,1849,2582, %T A274182 3085,3829,4659,5587,7697,8891,10189,13885,14695,16838,17281,18187, %U A274182 19111,20057,22546,24131,25798,26938,27515,28102,35566,36886,38919,41739,43199,50885 %N A274182 Semiprimes that are the sum of the first n odd primes for some n. %C A274182 The set of semiprimes in A071148. %C A274182 Intersection of A001358 and A071148. %H A274182 Robert Israel, <a href="/A274182/b274182.txt">Table of n, a(n) for n = 1..10000</a> %e A274182 26 appears in the sequence because 26 = 2*13 that is semiprime. Also, 3+5+7+11 = 26. %e A274182 158 appears in the sequence because 158 = 2*79 that is semiprime. Also, 3+5+7+11+13+17+19+23+29+31 = 158. %p A274182 P:= select(isprime,[seq(i,i=3..10^4,2)]): %p A274182 select(t -> numtheory:-bigomega(t)=2, ListTools:-PartialSums(P)); # _Robert Israel_, Sep 23 2019 %t A274182 Select[a = 0; Table[a = a + Prime[k], {k, 2, 300}], PrimeOmega[#] == 2 &] %o A274182 (PARI) s = 0; forprime(p=3, 1e4, s += p; if (bigomega(s)==2, print1(s, ", "))) %Y A274182 Cf. A001358, A071148, A189072, A274120. %K A274182 nonn %O A274182 1,1 %A A274182 _K. D. Bajpai_, Jun 12 2016