A274187 Least number that is the product of n consecutive positive numbers and the product of 2 oblong numbers.
4, 12, 24, 24, 120, 5040, 5040, 362880, 362880, 3628800, 39916800, 6227020800, 6227020800, 3379030566912000
Offset: 1
Examples
a(3) = 24 = 2*3*4 = 2*12. a(6) = 5040 = 2*3*4*5*6*7 = 12*420 = 56*90.
Programs
-
Maple
N:= 10^10: # to get all terms <= N A072389:= {seq(seq(n*(n+1)*m*(m+1),m=n..floor((sqrt(1+4*N/(n*(n+1))-1)/2))),n=1..floor((sqrt(1+2*N)-1)/2))}: for n from 1 do x:= n!; for m from 1 while x <= N and not member(x, A072389) do x:= x*(n+m)/m od; if x > N then break fi; A[n]:= x; od: seq(A[i],i=1..n-1); # Robert Israel, Jun 16 2016
Extensions
a(14) from Robert Israel, Jun 16 2016