This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274199 #14 Mar 07 2023 02:37:19 %S A274199 1,1,2,3,5,8,12,19,29,44,67,101,152,228,342,511,763,1138,1695,2523, %T A274199 3752,5578,8287,12307,18272,27119,40241,59700,88556,131340,194772, %U A274199 288815,428229,634900,941263,1395397,2068560,3066372,4545387,6737633,9987026,14803303 %N A274199 Limiting reverse row of the array A274190. %C A274199 The triangular array (g(n,k)) at A274190 is defined as follows: g(n,k) = 1 for n >= 0; g(n,k) = 0 if k > n; g(n,k) = g(n-1,k-1) + g(n-1,2k) for n > 0, k > 1. %C A274199 From _Gus Wiseman_, Mar 12 2021: (Start) %C A274199 Also (apparently) the number of compositions of n where all adjacent parts (x, y), satisfy x < 2y. For example, the a(1) = 1 through a(6) = 12 compositions are: %C A274199 (1) (2) (3) (4) (5) (6) %C A274199 (11) (12) (13) (14) (15) %C A274199 (111) (22) (23) (24) %C A274199 (112) (32) (33) %C A274199 (1111) (113) (114) %C A274199 (122) (123) %C A274199 (1112) (132) %C A274199 (11111) (222) %C A274199 (1113) %C A274199 (1122) %C A274199 (11112) %C A274199 (111111) %C A274199 (End) %H A274199 Daniel Gabric and Jeffrey Shallit, <a href="https://arxiv.org/abs/2302.13147">Smallest and Largest Block Palindrome Factorizations</a>, arXiv:2302.13147 [math.CO], 2023. %e A274199 Row (g(14,k)): 1, 51, 73, 69, 55, 40, 28, 19, 12, 8, 5, 3, 2, 1, 1; the reversal is 1 1 2 3 5 8 12 19 28 ..., which agrees with A274199 up to 19. %t A274199 g[n_, 0] = g[n, 0] = 1; %t A274199 g[n_, k_] := g[n, k] = If[k > n, 0, g[n - 1, k - 1] + g[n - 1, 2 k]]; %t A274199 z = 300; u = Reverse[Table[g[z, k], {k, 0, z}]]; %t A274199 z = 301; v = Reverse[Table[g[z, k], {k, 0, z}]]; %t A274199 w = Join[{1}, Intersection[u, v]] (* A274199 *) %t A274199 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]<2*#[[i-1]],{i,2,Length[#]}]&]],{n,15}] (* _Gus Wiseman_, Mar 12 2021 *) %Y A274199 Cf. A274190, A274200, A274201. %Y A274199 Cf. A000929, A003242, A154402, A224957, A342094, A342095, A342096, A342097, A342098, A342191, A342330-A342342. %K A274199 nonn,easy %O A274199 0,3 %A A274199 _Clark Kimberling_, Jun 13 2016