cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274205 Numbers such that the sum of divisors is twice the sum of the exponential divisors.

This page as a plain text file.
%I A274205 #18 Jun 16 2016 22:39:37
%S A274205 6,24,54,216,1638,6552,14256,55860,80262,276822,321048,502740,1107288,
%T A274205 1396500,1724976,12568500,13564278,20165460,54257112,168836850,
%U A274205 181489140,504136500,675347400,4537228500,28533427650,60950102850,114133710600,162252212850,243800411400,649008851400,734916514878
%N A274205 Numbers such that the sum of divisors is twice the sum of the exponential divisors.
%C A274205 All terms appear to be multiples of 6.
%C A274205 Subset of A011775, A069235, A175200, A215142.
%C A274205 a(32) > 10^12. If p*r is a term, where p is prime and r is not divisible by p, then p^3*r is also a term. - _Giovanni Resta_, Jun 15 2016
%e A274205 Divisors of 6 are 1, 2, 3 and 6 which sum to 12. The only exponential divisor is 6. Finally 12 / 6 = 2.
%e A274205 Divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24 which sum to 60. Exponential divisors are 6, 24 and their sum is 30. Finally 60 / 30 = 2.
%p A274205 with(numtheory): P:=proc(q) local a,b,c,d,j,k,n,ok;
%p A274205 for n from 2 to q do a:=ifactors(n)[2]; b:=sort([op(divisors(n))]); c:=0;
%p A274205 for k from 2 to nops(b) do d:=ifactors(b[k])[2]; if nops(d)=nops(a) then
%p A274205 ok:=1; for j from 1 to nops(d) do if not type(a[j][2]/d[j][2],integer) then ok:=0; break; fi; od;
%p A274205 if ok=1 then c:=c+b[k]; fi;  fi; od; if sigma(n)=2*c  then print(n); fi; od; end: P(10^9);
%t A274205 Select[Range[10^6], 2 Times @@ Map[Sum[First[#]^d, {d, Divisors@ Last@ #}] &, FactorInteger@ #] == DivisorSigma[1, #] &] (* _Michael De Vlieger_, Jun 16 2016 *)
%Y A274205 Cf. A000203, A011775, A051377, A069235, A175200, A215142.
%K A274205 nonn
%O A274205 1,1
%A A274205 _Paolo P. Lava_, Jun 13 2016
%E A274205 a(16)-a(31) from _Giovanni Resta_, Jun 15 2016