This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274207 #25 Apr 28 2018 12:58:29 %S A274207 1,2,2,2,2,4,4,2,4,7,1,6,6,10,4,2,9,13,14,12,2,8,13,22,18,24,10,2,2, %T A274207 15,27,40,29,38,28,12,2,10,24,45,65,59,58,56,40,16,4,2,23,52,84,104, %U A274207 112,100,95,88,56,28,7,1,12,40,92,148,181,205,191,172,163,132,96,48,16,4 %N A274207 Number T(n,k) of bargraphs of site-perimeter n having area k; triangle T(n,k), n>=4, floor((n-1)/2)<=k<=floor(((n-1)^2+3)/12), read by rows. %C A274207 A bargraph is a polyomino whose bottom is a segment of the nonnegative x-axis and whose upper part is a lattice path starting at (0,0) and ending with its first return to the x-axis using steps U=(0,1), D=(0,-1) and H=(1,0), where UD and DU are not allowed. %C A274207 The site-perimeter of a polyomino is the number of exterior cells having a common edge with at least one polyomino cell. %H A274207 Alois P. Heinz, <a href="/A274207/b274207.txt">Rows n = 4..100, flattened</a> %H A274207 M. Bousquet-Mélou and A. Rechnitzer, <a href="http://dx.doi.org/10.1016/S0196-8858(02)00553-5">The site-perimeter of bargraphs</a>, Adv. in Appl. Math. 31 (2003), 86-112. %H A274207 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polyomino">Polyomino</a> %F A274207 Sum_{k=floor((n-1)/2)..floor(((n-1)^2+3)/12)} k * T(n,k) = A274208(n). %F A274207 Sum_{n>=4} k * T(n,k) = A001787(k). %F A274207 Sum_{n>=4} n * T(n,k) = A274217(k). %e A274207 _ %e A274207 T(4,1) = 1: |_| %e A274207 _ %e A274207 | | ___ %e A274207 T(6,2) = 2: |_| |___| %e A274207 _ _ %e A274207 | |_ _| | %e A274207 T(7,3) = 2: |___| |___| %e A274207 _ %e A274207 | | %e A274207 | | _____ %e A274207 T(8,3) = 2: |_| |_____| %e A274207 ___ _ %e A274207 | | _| |_ %e A274207 T(8,4) = 2: |___| |_____| %e A274207 _ _ %e A274207 | | | | _ _ %e A274207 | |_ _| | | |___ ___| | %e A274207 T(9,4) = 4: |___| |___| |_____| |_____| %e A274207 _ _ %e A274207 | |_ _| | ___ ___ %e A274207 | | | | | |_ _| | %e A274207 T(9,5) = 4: |___| |___| |_____| |_____| %e A274207 _ %e A274207 _| |_ %e A274207 | | %e A274207 T(10,7) = 1: |_____| %e A274207 . %e A274207 Triangle T(n,k) begins: %e A274207 n\k: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . %e A274207 ---+---------------------------------------------------- %e A274207 04 : 1 %e A274207 05 : %e A274207 06 : 2 %e A274207 07 : 2 %e A274207 08 : 2 2 %e A274207 09 : 4 4 %e A274207 10 : 2 4 7 1 %e A274207 11 : 6 6 10 4 %e A274207 12 : 2 9 13 14 12 2 %e A274207 13 : 8 13 22 18 24 10 2 %e A274207 14 : 2 15 27 40 29 38 28 12 2 %e A274207 15 : 10 24 45 65 59 58 56 40 16 4 %e A274207 16 : 2 23 52 84 104 112 100 95 88 56 28 7 1 %p A274207 b:= proc(n, y, t, w) option remember; `if`(n<0, 0, `if`(n=0, (1-t), %p A274207 `if`(t<0, 0, b(n-`if`(w>0 or t=0, 1, 2), y+1, 1, max(0, w-1)))+ %p A274207 `if`(t>0 or y<2, 0, b(n, y-1, -1, `if`(t=0, 1, w+1))) +expand( %p A274207 `if`(y<1, 0, z^y*b(n-`if`(t<0, 1, 2), y, 0, `if`(t<0, w, 0)))))) %p A274207 end: %p A274207 T:= n-> (p-> seq(coeff(p, z, i), %p A274207 i= iquo(n-1, 2)..iquo((n-1)^2+3, 12)))(b(n, 0, 1, 0)): %p A274207 seq(T(n), n=4..20); %t A274207 b[n_, y_, t_, w_] := b[n, y, t, w] = If[n<0, 0, If[n==0, (1-t), If[t<0, 0, b[n - If[w>0 || t==0, 1, 2], y+1, 1, Max[0, w-1]]] + If[t>0 || y<2, 0, b[n, y-1, -1, If[t==0, 1, w+1]]] + Expand[If[y<1, 0, z^y*b[n - If[t<0, 1, 2], y, 0, If[t<0, w, 0]]]]]]; %t A274207 T[n_] := Function[p, Table[Coefficient[p, z, i], {i, Quotient[n-1, 2], Quotient[(n-1)^2 + 3, 12]}]][b[n, 0, 1, 0]]; %t A274207 Table[T[n], {n, 4, 20}] // Flatten (* _Jean-François Alcover_, Apr 28 2018, after _Alois P. Heinz_ *) %Y A274207 Row sums give A075126. %Y A274207 Column sums give A000079(k-1). %Y A274207 Cf. A001787, A273346, A274208, A274217. %K A274207 nonn,tabf %O A274207 4,2 %A A274207 _Alois P. Heinz_, Jun 13 2016