cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274207 Number T(n,k) of bargraphs of site-perimeter n having area k; triangle T(n,k), n>=4, floor((n-1)/2)<=k<=floor(((n-1)^2+3)/12), read by rows.

This page as a plain text file.
%I A274207 #25 Apr 28 2018 12:58:29
%S A274207 1,2,2,2,2,4,4,2,4,7,1,6,6,10,4,2,9,13,14,12,2,8,13,22,18,24,10,2,2,
%T A274207 15,27,40,29,38,28,12,2,10,24,45,65,59,58,56,40,16,4,2,23,52,84,104,
%U A274207 112,100,95,88,56,28,7,1,12,40,92,148,181,205,191,172,163,132,96,48,16,4
%N A274207 Number T(n,k) of bargraphs of site-perimeter n having area k; triangle T(n,k), n>=4, floor((n-1)/2)<=k<=floor(((n-1)^2+3)/12), read by rows.
%C A274207 A bargraph is a polyomino whose bottom is a segment of the nonnegative x-axis and whose upper part is a lattice path starting at (0,0) and ending with its first return to the x-axis using steps U=(0,1), D=(0,-1) and H=(1,0), where UD and DU are not allowed.
%C A274207 The site-perimeter of a polyomino is the number of exterior cells having a common edge with at least one polyomino cell.
%H A274207 Alois P. Heinz, <a href="/A274207/b274207.txt">Rows n = 4..100, flattened</a>
%H A274207 M. Bousquet-Mélou and A. Rechnitzer, <a href="http://dx.doi.org/10.1016/S0196-8858(02)00553-5">The site-perimeter of bargraphs</a>, Adv. in Appl. Math. 31 (2003), 86-112.
%H A274207 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polyomino">Polyomino</a>
%F A274207 Sum_{k=floor((n-1)/2)..floor(((n-1)^2+3)/12)} k * T(n,k) = A274208(n).
%F A274207 Sum_{n>=4} k * T(n,k) = A001787(k).
%F A274207 Sum_{n>=4} n * T(n,k) = A274217(k).
%e A274207               _
%e A274207 T(4,1) = 1:  |_|
%e A274207               _
%e A274207              | |     ___
%e A274207 T(6,2) = 2:  |_|    |___|
%e A274207               _        _
%e A274207              | |_    _| |
%e A274207 T(7,3) = 2:  |___|  |___|
%e A274207               _
%e A274207              | |
%e A274207              | |     _____
%e A274207 T(8,3) = 2:  |_|    |_____|
%e A274207               ___      _
%e A274207              |   |   _| |_
%e A274207 T(8,4) = 2:  |___|  |_____|
%e A274207               _        _
%e A274207              | |      | |   _            _
%e A274207              | |_    _| |  | |___    ___| |
%e A274207 T(9,4) = 4:  |___|  |___|  |_____|  |_____|
%e A274207               _        _
%e A274207              | |_    _| |   ___        ___
%e A274207              |   |  |   |  |   |_    _|   |
%e A274207 T(9,5) = 4:  |___|  |___|  |_____|  |_____|
%e A274207                 _
%e A274207               _| |_
%e A274207              |     |
%e A274207 T(10,7) = 1: |_____|
%e A274207 .
%e A274207 Triangle T(n,k) begins:
%e A274207 n\k: 1 2 3 4 5 6  7  8  9 10  11  12  13 14 15 16 17 . .
%e A274207 ---+----------------------------------------------------
%e A274207 04 : 1
%e A274207 05 :
%e A274207 06 :   2
%e A274207 07 :     2
%e A274207 08 :     2 2
%e A274207 09 :       4 4
%e A274207 10 :       2 4 7  1
%e A274207 11 :         6 6 10  4
%e A274207 12 :         2 9 13 14 12  2
%e A274207 13 :           8 13 22 18 24  10   2
%e A274207 14 :           2 15 27 40 29  38  28  12  2
%e A274207 15 :             10 24 45 65  59  58  56 40 16  4
%e A274207 16 :              2 23 52 84 104 112 100 95 88 56 28 7 1
%p A274207 b:= proc(n, y, t, w) option remember; `if`(n<0, 0, `if`(n=0, (1-t),
%p A274207      `if`(t<0, 0, b(n-`if`(w>0 or t=0, 1, 2), y+1, 1, max(0, w-1)))+
%p A274207      `if`(t>0 or y<2, 0, b(n, y-1, -1, `if`(t=0, 1, w+1))) +expand(
%p A274207      `if`(y<1, 0, z^y*b(n-`if`(t<0, 1, 2), y, 0, `if`(t<0, w, 0))))))
%p A274207     end:
%p A274207 T:= n-> (p-> seq(coeff(p, z, i),
%p A274207          i= iquo(n-1, 2)..iquo((n-1)^2+3, 12)))(b(n, 0, 1, 0)):
%p A274207 seq(T(n), n=4..20);
%t A274207 b[n_, y_, t_, w_] := b[n, y, t, w] = If[n<0, 0, If[n==0, (1-t), If[t<0, 0, b[n - If[w>0 || t==0, 1, 2], y+1, 1, Max[0, w-1]]] + If[t>0 || y<2, 0, b[n, y-1, -1, If[t==0, 1, w+1]]] + Expand[If[y<1, 0, z^y*b[n - If[t<0, 1, 2], y, 0, If[t<0, w, 0]]]]]];
%t A274207 T[n_] := Function[p, Table[Coefficient[p, z, i], {i, Quotient[n-1, 2], Quotient[(n-1)^2 + 3, 12]}]][b[n, 0, 1, 0]];
%t A274207 Table[T[n], {n, 4, 20}] // Flatten (* _Jean-François Alcover_, Apr 28 2018, after _Alois P. Heinz_ *)
%Y A274207 Row sums give A075126.
%Y A274207 Column sums give A000079(k-1).
%Y A274207 Cf. A001787, A273346, A274208, A274217.
%K A274207 nonn,tabf
%O A274207 4,2
%A A274207 _Alois P. Heinz_, Jun 13 2016