A274214 Numbers k such that 4*10^k + 63 is prime.
0, 1, 2, 4, 6, 9, 11, 14, 16, 26, 54, 74, 111, 130, 152, 253, 345, 607, 686, 1590, 2711, 5462, 7021, 8681, 11044, 18132, 24072, 25211, 44332, 52792, 85881
Offset: 1
Examples
4 is in this sequence because 4*10^4 + 63 = 40063 is prime. Initial terms and associated primes: a(1) = 0, 67; a(2) = 1, 103; a(3) = 2, 463; a(4) = 4, 40063; a(5) = 6, 4000063, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 40w63.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[4*10^# + 63] &]
-
PARI
is(n)=ispseudoprime(4*10^n + 63) \\ Charles R Greathouse IV, Jun 13 2017
Comments