cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274218 Numbers such that the sum of their digits is equal to the sum of digits of their aliquot parts.

This page as a plain text file.
%I A274218 #9 Jun 19 2016 06:21:57
%S A274218 6,33,87,249,303,519,573,681,843,951,1059,1329,1383,1923,1977,2463,
%T A274218 2733,2787,2949,3057,3273,3327,3543,3651,3867,3921,4083,4353,4677,
%U A274218 5163,5433,5703,5919,6081,6243,6297,6621,6891,7053,7323,7377,7647,7971,8079,8133,8187
%N A274218 Numbers such that the sum of their digits is equal to the sum of digits of their aliquot parts.
%H A274218 Paolo P. Lava, <a href="/A274218/b274218.txt">Table of n, a(n) for n = 1..1000</a>
%e A274218 Sum of digits of 8884 is 8 + 8 + 8 + 4 = 28. Its aliquot parts are 1, 2, 4, 2221, 4442 and their sum is 1 + 2 + 4 + 2 + 2 + 2 + 1 + 4 + 4 + 4 + 2 = 28.
%p A274218 with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do
%p A274218 y:=y+(x mod 10); x:=trunc(x/10); od; y; end:
%p A274218 P:=proc(q) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]);
%p A274218 if T(n)=add(T(a[k]),k=1..nops(a)-1) then print(n); fi; od; end: P(10^6);
%t A274218 Select[Range[10^4], Total@ IntegerDigits@ # == Total[Total@ IntegerDigits@ # & /@ Most@ Divisors@ #] &] (* _Michael De Vlieger_, Jun 14 2016 *)
%Y A274218 Cf. A007953, A006753.
%K A274218 nonn,base,easy
%O A274218 1,1
%A A274218 _Paolo P. Lava_, Jun 14 2016