cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274233 Number of partitions of n*(n-1)/2 into at most three parts.

This page as a plain text file.
%I A274233 #13 Jun 16 2016 03:14:19
%S A274233 1,1,3,7,14,27,48,80,127,192,280,397,547,736,972,1261,1610,2028,2523,
%T A274233 3104,3781,4563,5461,6487,7651,8965,10443,12097,13940,15987,18252,
%U A274233 20750,23497,26508,29800,33391,37297,41536,46128,51091,56444,62208,68403,75050
%N A274233 Number of partitions of n*(n-1)/2 into at most three parts.
%H A274233 Colin Barker, <a href="/A274233/b274233.txt">Table of n, a(n) for n = 1..1000</a>
%F A274233 Coefficient of x^(n*(n-1)/2) in 1/((1-x)*(1-x^2)*(1-x^3)).
%F A274233 Empirical g.f.: (1-3*x+6*x^2-7*x^3+9*x^4-7*x^5+6*x^6-3*x^7+x^8) / ((1-x)^5*(1+x^2)*(1+x+x^2)).
%o A274233 (PARI)
%o A274233 \\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)).
%o A274233 b(n) = round(real((47+9*(-1)^n + 8*exp(-2/3*I*n*Pi) + 8*exp((2*I*n*Pi)/3) + 36*n+6*n^2)/72))
%o A274233 vector(50, n, b(n*(n-1)/2))
%Y A274233 A subsequence of A001399. Cf. A274099, A274232.
%K A274233 nonn
%O A274233 1,3
%A A274233 _Colin Barker_, Jun 15 2016