A274281 Numbers that are a product of distinct Lucas numbers (2,1,3,4,7,11,...)
1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 18, 21, 22, 24, 28, 29, 33, 36, 42, 44, 47, 54, 56, 58, 66, 72, 76, 77, 84, 87, 88, 94, 108, 116, 123, 126, 132, 141, 144, 152, 154, 168, 174, 188, 198, 199, 203, 216, 228, 231, 232, 246, 252, 264, 282, 304, 308, 319, 322
Offset: 1
Examples
The Lucas numbers are 2,1,3,4,7,11,18,29,..., so that the sequence of all products of distinct Lucas numbers, in increasing order, are 1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 18, 21, 22, 24, 28, 29,...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[1] = 2; f[2] = 1; z = 32; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s
Comments