cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274291 The width of the lattice of Dyck paths of length 2n ordered by the relation that one Dyck path lies above another one.

This page as a plain text file.
%I A274291 #44 Jun 21 2021 01:55:12
%S A274291 1,1,1,2,3,7,17,44,118,338,1003,3039,9466,30009,96757,316429,1047683,
%T A274291 3511473,11876457,40537388,139490014,483393651,1686007017,5917253784,
%U A274291 20879801881,74038098051,263793988890,943928231920,3390975927021,12227214763162,44242758258306
%N A274291 The width of the lattice of Dyck paths of length 2n ordered by the relation that one Dyck path lies above another one.
%C A274291 Previous name was: The width of the lattice E_n defined in the paper by Boldi and Vigna, that is, the cardinality of a maximal antichain.
%C A274291 a(n) is the maximum entry in row n of the triangle T(n,k) defined in A138158, or equivalently, the maximum entry in row n of the triangle T(n,k) defined in A227543. All level sizes of the lattice are given by A138158 and A227543. - _Torsten Muetze_, Nov 28 2018
%D A274291 Winston, Kenneth J., and Daniel J. Kleitman. "On the asymptotic number of tournament score sequences." Journal of Combinatorial Theory, Series A 35.2 (1983): 208-230. See  Table 1.
%H A274291 Torsten Muetze, <a href="/A274291/b274291.txt">Table of n, a(n) for n = 0..300</a>
%H A274291 Paolo Boldi and Sebastiano Vigna, <a href="https://doi.org/10.1007/s11083-016-9418-8">On the Lattice of Antichains of Finite Intervals</a>, Order (2016), 1-25.
%H A274291 Paolo Boldi, Sebastiano Vigna, <a href="https://arxiv.org/abs/1510.03675">On the lattice of antichains of finite intervals</a>, arXiv preprint arXiv:1510.03675 [math.CO], 2015-2016.
%e A274291 For n=4 there are 14 Dyck paths, and 1,3,3,3,2,1,1 of them have area 0,1,2,3,4,5,6, respectively, where the area is normalized to the range 0,...,n(n-1)/2. These Dyck paths are UDUDUDUD (area=0), UUDDUDUD, UDUUDDUD, UDUDUUDD (area=1), UUDUDDUD, UDUUDUDD, UUDDUUDD (area=2), UUUDDDUD, UUDUDUDD, UDUUUDDD (area=3), UUUDDUDD, UUDUUDDD (area=4), UUUDUDDD (area=5), UUUUDDDD (area=6). The maximum among the numbers 1,3,3,3,2,1,1 is 3, so a(4)=3.
%Y A274291 Cf. A138158, A227543.
%K A274291 nonn
%O A274291 0,4
%A A274291 _N. J. A. Sloane_, Jun 17 2016
%E A274291 a(0)=1 inserted by _Sebastiano Vigna_, Dec 20 2017
%E A274291 New name and more terms from _Torsten Muetze_, Nov 28 2018