A274305 Order of shuffle group generated by in- and out-horseshoe shuffles of a deck of 2n cards.
2, 12, 120, 32, 3628800, 95040, 87178291200, 80, 6402373705728000, 1216451004088320000, 1124000727777607680000, 310224200866619719680000, 403291461126605635584000000, 152444172305856930250752000000, 265252859812191058636308480000000, 192, 295232799039604140847618609643520000000
Offset: 1
Keywords
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..64
- Steve Butler, Persi Diaconis and R. L. Graham, The mathematics of the flip and horseshoe shuffles, arXiv:1412.8533 [math.CO], 2014.
- Steve Butler, Persi Diaconis and R. L. Graham, The mathematics of the flip and horseshoe shuffles, The American Mathematical Monthly 123.6 (2016): 542-556.
Programs
-
Maple
f:=proc(n) local k,i,np; if n=1 then 2 elif n=2 then 12 elif n=3 then 120 elif n=6 then 12!/7! elif (n mod 2) = 1 then (2*n)! else np:=n; k:=1; for i while (np mod 2) = 0 do np:=np/2; k:=k+1; od; if (n=2^(k-1)) then (k+1)*2^k else (2*n)!/2; fi; fi; end; [seq(f(n),n=1..64)];
-
Mathematica
a[n_] := Which[n == 1, 2, n == 2, 12, n == 3, 120, n == 6, 12!/7!, OddQ[n], (2 n)!, True, np = n; k = 1; While[EvenQ[np], np = np/2; k++]; If[n == 2^(k - 1), (k + 1)*2^k, (2n)!/2]]; Array[a, 17] (* Jean-François Alcover, Nov 30 2017, from Maple *)
Formula
See Maple program.