A274322 Number of partitions of n^2 into at most five parts.
1, 1, 5, 23, 101, 377, 1226, 3507, 9027, 21224, 46262, 94512, 182702, 336666, 595085, 1014091, 1673243, 2682685, 4192118, 6401314, 9572962, 14047457, 20260601, 28763703, 40247228, 55567352, 75776769, 102158957, 136267461, 179969238, 235493851, 305487369
Offset: 0
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
Crossrefs
A subsequence of A001401.
Programs
-
PARI
\\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)). b(n) = round(((n+5)^4+10*((n+5)^3+(n+5)^2)-75*(n+5)-45*(n+5)*(-1)^(n+5))/2880) vector(40, n, n--; b(n^2))
Formula
Coefficient of x^(n^2) in 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)).
a(n) = A001401(n^2).
Empirical g.f.: (1 -3*x +4*x^2 +13*x^3 +21*x^4 +63*x^5 +138*x^6 +204*x^7 +257*x^8 +280*x^9 +267*x^10 +201*x^11 +128*x^12 +67*x^13 +31*x^14 +6*x^15 +x^16 +x^17) / ((1 -x)^9*(1 +x)^3*(1 +x +x^2)*(1 +x +x^2 +x^3 +x^4)).