cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274322 Number of partitions of n^2 into at most five parts.

Original entry on oeis.org

1, 1, 5, 23, 101, 377, 1226, 3507, 9027, 21224, 46262, 94512, 182702, 336666, 595085, 1014091, 1673243, 2682685, 4192118, 6401314, 9572962, 14047457, 20260601, 28763703, 40247228, 55567352, 75776769, 102158957, 136267461, 179969238, 235493851, 305487369
Offset: 0

Views

Author

Colin Barker, Jun 20 2016

Keywords

Crossrefs

A subsequence of A001401.

Programs

  • PARI
    \\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)).
    b(n) = round(((n+5)^4+10*((n+5)^3+(n+5)^2)-75*(n+5)-45*(n+5)*(-1)^(n+5))/2880)
    vector(40, n, n--; b(n^2))

Formula

Coefficient of x^(n^2) in 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)).
a(n) = A001401(n^2).
Empirical g.f.: (1 -3*x +4*x^2 +13*x^3 +21*x^4 +63*x^5 +138*x^6 +204*x^7 +257*x^8 +280*x^9 +267*x^10 +201*x^11 +128*x^12 +67*x^13 +31*x^14 +6*x^15 +x^16 +x^17) / ((1 -x)^9*(1 +x)^3*(1 +x +x^2)*(1 +x +x^2 +x^3 +x^4)).