This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274323 #19 Mar 17 2024 23:38:02 %S A274323 1,1,9,41,129,313,649,1201,2049,3281,5001,7321,10369,14281,19209, %T A274323 25313,32769,41761,52489,65161,80001,97241,117129,139921,165889, %U A274323 195313,228489,265721,307329,353641,405001,461761,524289,592961,668169,750313,839809,937081 %N A274323 Number of partitions of n^4 into at most two parts. %C A274323 Coefficient of x^(n^4) in 1/((1-x)*(1-x^2)). %H A274323 Colin Barker, <a href="/A274323/b274323.txt">Table of n, a(n) for n = 0..1000</a> %H A274323 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,0,5,-4,1). %F A274323 G.f.: (1 - 3*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5) / ((1-x)^5*(1+x)). %F A274323 a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n > 5. %F A274323 a(n) = (3 + (-1)^n + 2*n^4)/4. %F A274323 a(n) = A008619(n^4). %F A274323 a(n) = 1 + floor(n^4/2). - _Alois P. Heinz_, Oct 13 2016 %F A274323 E.g.f.: ((2 + x + 7*x^2 + 6*x^3 + x^4)*cosh(x) + (1 + x + 7*x^2 + 6*x^3 + x^4)*sinh(x))/2. - _Stefano Spezia_, Mar 17 2024 %o A274323 (PARI) a(n) = (3+(-1)^n+2*n^4)/4 %o A274323 (PARI) %o A274323 b(n) = (3+(-1)^n+2*n)/4 \\ the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)) %o A274323 vector(50, n, n--; b(n^4)) %Y A274323 Cf. A099392 (n^2), A274324 (n^3), A274325 (n^5). %Y A274323 Cf. A008619. %K A274323 nonn,easy %O A274323 0,3 %A A274323 _Colin Barker_, Oct 13 2016