A274328 a(n) is the sum of a sequence of multiples of the n-th prime such that it contains each of the digits from 0 to 9 exactly once and with the least sum possible, or 0 if there is no satisfying sequence.
270, 135, 38475, 252, 1881, 702, 918, 684, 1656, 2349, 1953, 7326, 2952, 2322, 2961, 3339, 3717, 3843, 3015, 3195, 3285, 5688, 8217, 5607, 4365, 95445, 6489, 4815, 3924, 37629, 35433, 10611, 9864, 5004, 41571, 4077, 39564, 2934, 34569, 42039
Offset: 1
Examples
For n = 7, a(7) = 918 because prime(7) = 17, sequence 34, 85, 102, 697, sum 918.
Links
- Ryan Hitchman, Table of n, a(n) for n = 1..10544
- Claudio Meller Blog, Multiples with all the digits, June 13 2016.
Crossrefs
Programs
-
Mathematica
(m = Select[#*Range[10000], Max[DigitCount[#]] == 1 &]; Total[m*LinearProgramming[m, Thread[DigitCount /@ m], ConstantArray[{1, 0}, 10], 0, Integers]]) & /@ Prime[Range[40]] (* Ryan Hitchman, Sep 15 2017 *)
Extensions
Terms a(9) and beyond, zero case from Ryan Hitchman, Sep 15 2017
Comments