A274336 Numbers k such that (16*10^k - 91)/3 is prime.
1, 2, 3, 5, 16, 18, 22, 31, 40, 98, 99, 192, 233, 367, 501, 1102, 1381, 1416, 2018, 6156, 6860, 7377, 14004, 16634, 21422, 27654, 85473, 260256, 265052, 274251
Offset: 1
Examples
3 is in this sequence because (16*10^3 - 91)/3 = 5303 is prime. Initial terms and associated primes: a(1) = 1, 23; a(2) = 2, 503; a(3) = 3, 5303; a(4) = 5, 533303; a(5) = 16, 53333333333333303, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 53w03.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(16*10^# - 91)/3] &]
-
PARI
is(n)=ispseudoprime((16*10^n - 91)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(28)-a(30) from Robert Price, Jun 01 2023
Comments