cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274342 Irregular triangle read by rows, giving the numerators of the coefficients of the Eisenstein series G_{2*n} multiplied by 2*n-1, for n >= 2. Also Laurent coefficients of Weierstrass's P function.

This page as a plain text file.
%I A274342 #15 May 08 2018 15:11:56
%S A274342 1,1,1,3,1,2,2,60,5,1,29,485,2,1722,5446,3,8000,10,5300,270,181188,
%T A274342 955290,4,4,15988040,416012,32420068,2682744,223,25851,8409205,49871,
%U A274342 301,1713301109422,1066033105795,4270,57425882,859704866,11125766,77746116,39343318862281,501010332520,4762
%N A274342 Irregular triangle read by rows, giving the numerators of the coefficients of the Eisenstein series G_{2*n} multiplied by 2*n-1, for n >= 2. Also Laurent coefficients of Weierstrass's P function.
%C A274342 The length of row n is A008615(n), n >= 2.
%C A274342 The denominator triangle is given in A274343.
%C A274342 The Eisenstein series with even index, G_{2*n}, when multiplied by 2*n-1, namely c(n) := (2*n-1)*G_{2*n}, satisfy the well-known recurrence relation (n-3) * (2*n +1) * c(n) = 3 * Sum_{j=2..n-2} c(j) * c(n-j), for  n >= 4, with initial terms c(2) = c2 and c(3) = c3. See, e.g., the references Abramowitz-Stegun, 18.5.3, p. 635, Apostol  p. 13, and  Tricomi, p. 34.
%C A274342 The solution of this recurrence is c(n) = Sum a(n, m)/A274343(n, m)*c2^e2(n, m)*c3^e3(n, m), where the sum is over the partitions of n with parts 2 and 3 only, and with nonnegative exponents e2(n, m) and e3(n, m), where m = 1..A008615(n). The order is by increasing number of parts. E.g., n=6 with the partitions 3^2 and 2^3, with c(6) = (1/13)*c(3)^2 + (2/39)*c(2)^3. See also the Abramowitz-Stegun reference 18.5.9 - 18.5.24, p. 636, for n=4..19, but not given in lowest terms, and with decreasing number of parts for the partitions (contrary to the listing of partitions on p. 831).
%C A274342 The rational numbers c(n) appear also as coefficients in the Laurent series of Weierstrass's P function: WeierstrassP(z; g_2, g_3) = 1/z^2 + Sum_{n >= 2} c(n) * z^{2*n-2}, with g_2 = 20*c(2) and g_4 = 28*c(3). See, e.g., the Abramowitz-Stegun reference 18.5.1, p. 635. See also the o.g.f. given below.
%C A274342 For the polynomials c(2)..c(20) see the W. Lang link, also for the corresponding Eisenstein series G_{2*n} in terms of g_2 and g_4.
%D A274342 T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, p. 13.
%D A274342 F. Tricomi, Elliptische Funktionen (German translation by M. Krafft of: Funzioni ellittiche), Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1948, pp. 34-35.
%H A274342 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], ch. 18.5, pp. 635-636.
%H A274342 Wolfdieter Lang, <a href="/A274342/a274342.pdf">Rationals c(n), n = 2..20, and Eisenstein series G_{2*k}, k = 2..10.</a>
%F A274342 a(n) = numerator(r(n)) with the rationals r(n) in lowest terms obtained from the c(n) recurrence given in a comment above as coefficients of powers of c2 and c3 corresponding to the partitions of n with parts 2 and 3 only, when sorted with increasing number of parts.
%F A274342 O.g.f: C(x) = Sum_{n >= 2} c(n)*x^n = x*WeierstrassP(sqrt(x), g_2 = 20*c(2), g_3 = 28*c(3)) - 1. Compare with Abramowitz-Stegun, 18.5.1, p. 635.
%F A274342 Nonlinear differential equation of second order for the o.g.f C(x) derived from the recurrence relation of c(n): 2*x^2*(d^2/dx^2)C(x) - 3*x*(d/dx)C(x) - 3*C(x) + 5*x^2*c(2) - 3*C(x)^2 = 0, with C(0) = 0 and C'(0) = 0.
%e A274342 The irregular triangle a(n, m) begins:
%e A274342 n\m          1          2         3   ...
%e A274342 2:           1
%e A274342 3:           1
%e A274342 4:           1
%e A274342 5:           3
%e A274342 6:           1          2
%e A274342 7:           2
%e A274342 8:          60          5
%e A274342 9:           1         29
%e A274342 10:        485          2
%e A274342 11:       1722       5446
%e A274342 12:          3       8000        10
%e A274342 13:       5300        270
%e A274342 14:     181188     955290         4
%e A274342 15:          4   15988040    416012
%e A274342 16:   32420068    2682744       223
%e A274342 17:      25851    8409205     49871
%e A274342 ...
%e A274342 row n = 18: 301  1713301109422 1066033105795 4270,
%e A274342 row n = 19: 57425882 859704866 11125766,
%e A274342 row n = 20: 77746116 39343318862281 501010332520  4762.
%e A274342 The irregular triangle of rationals r(n) starts:
%e A274342 n\m:      1              2            3  ...
%e A274342 2:       1/1
%e A274342 3:       1/1
%e A274342 4:       1/3
%e A274342 5:       3/11
%e A274342 6:       1/13           2/39
%e A274342 7:       2/33
%e A274342 8:      60/2431         5/663
%e A274342 9:       1/2           29/2717
%e A274342 10:    485/80223        2/1989
%e A274342 11:   1722/1062347   5446/3187041
%e A274342 12:     3/16055      8000/6605027   10/77571
%e A274342 13:  5300/11685817   270/1062347
%e A274342 ...
%e A274342 row n = 14: 181188/2002524095 955290/4405553009  4/249951,
%e A274342 row n = 15: 4/497705  15988040/155409680283 416012/11559397707,
%e A274342 row n = 16: 32420068/1123416017295 2682744/74894401153  223/114727509,
%e A274342 row n = 17:  25851/5643476995    8409205/409716429837 49871/10158258591,
%e A274342 row n = 18: 301/909705199  1713301109422/233400836858808047  1066033105795/190964321066297493  4270/18394643943,
%e A274342 row n = 19: 57425882/34825896536145  859704866/229850917138557  11125766/17096349208653,
%e A274342 row n = 20: 77746116/357856262339147  39343318862281/24291640943843637507  501010332520/602272089516784401  4762/174041631153.
%Y A274342 Cf. A008615, A274343.
%K A274342 nonn,tabf,frac,easy
%O A274342 2,4
%A A274342 _Wolfdieter Lang_, Jun 20 2016