cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274343 Irregular triangle read by rows giving the denominators of the coefficients of the Eisenstein series G_{2*n} multiplied by 2*n-1, for n >= 2. Also Laurent coefficients of Weierstrass's P function.

This page as a plain text file.
%I A274343 #14 Mar 21 2020 09:41:32
%S A274343 1,1,3,11,13,39,33,2431,663,247,2717,80223,1989,1062347,3187041,16055,
%T A274343 6605027,77571,11685817,1062347,2002524095,4405553009,247,2717,497705,
%U A274343 155409680283,11559397707,1123416017295,74894401153,114727509,5643476995,409716429837,10158258591,909705199,233400836858808047,190964321066297493,18394643943,34825896536145,229850917138557,17096349208653,357856262339147,24291640943843637507,602272089516784401,174041631153
%N A274343 Irregular triangle read by rows giving the denominators of the coefficients of the Eisenstein series G_{2*n} multiplied by 2*n-1, for n >= 2. Also Laurent coefficients of Weierstrass's P function.
%C A274343 The length of row n is A008615(n), n >= 2.
%C A274343 The numerator triangle is given in A274342 where also details and references are given.
%C A274343 a(n) = denominator(r(n)) where the rationals r(n) are reduced to lowest terms obtained from the c(n) recurrence given in a comment of A274342 as coefficients of powers of c2 and c3 corresponding to the partitions of n with parts 2 and 3 only, when sorted with increasing number of parts.
%e A274343 The irregular triangle a(n, m) begins:
%e A274343 n\m             1            2            3
%e A274343 2:              1
%e A274343 3:              1
%e A274343 4:              3
%e A274343 5:             11
%e A274343 6:             13           39
%e A274343 7:             33
%e A274343 8:           2431          663
%e A274343 9:            247         2717
%e A274343 10:          8022         1989
%e A274343 11:       1062347      3187041
%e A274343 12:         16055      6605027        77571
%e A274343 13:      11685817      1062347
%e A274343 14:    2002524095   4405553009       249951
%e A274343 15:        497705 155409680283  11559397707
%e A274343 16: 1123416017295  74894401153    114727509
%e A274343 17:    5643476995 409716429837  10158258591
%e A274343 ...
%e A274343 row n = 18: 909705199 233400836858808047 190964321066297493 18394643943,
%e A274343 row n = 19: 34825896536145  229850917138557 17096349208653,
%e A274343 row n = 20: 357856262339147 24291640943843637507 602272089516784401 174041631153.
%e A274343 ...
%e A274343 For the rationals r(n), n = 2..20, see A274342.
%Y A274343 Cf. A274342.
%K A274343 nonn,tabf,frac,easy
%O A274343 2,3
%A A274343 _Wolfdieter Lang_, Jun 20 2016