This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274343 #14 Mar 21 2020 09:41:32 %S A274343 1,1,3,11,13,39,33,2431,663,247,2717,80223,1989,1062347,3187041,16055, %T A274343 6605027,77571,11685817,1062347,2002524095,4405553009,247,2717,497705, %U A274343 155409680283,11559397707,1123416017295,74894401153,114727509,5643476995,409716429837,10158258591,909705199,233400836858808047,190964321066297493,18394643943,34825896536145,229850917138557,17096349208653,357856262339147,24291640943843637507,602272089516784401,174041631153 %N A274343 Irregular triangle read by rows giving the denominators of the coefficients of the Eisenstein series G_{2*n} multiplied by 2*n-1, for n >= 2. Also Laurent coefficients of Weierstrass's P function. %C A274343 The length of row n is A008615(n), n >= 2. %C A274343 The numerator triangle is given in A274342 where also details and references are given. %C A274343 a(n) = denominator(r(n)) where the rationals r(n) are reduced to lowest terms obtained from the c(n) recurrence given in a comment of A274342 as coefficients of powers of c2 and c3 corresponding to the partitions of n with parts 2 and 3 only, when sorted with increasing number of parts. %e A274343 The irregular triangle a(n, m) begins: %e A274343 n\m 1 2 3 %e A274343 2: 1 %e A274343 3: 1 %e A274343 4: 3 %e A274343 5: 11 %e A274343 6: 13 39 %e A274343 7: 33 %e A274343 8: 2431 663 %e A274343 9: 247 2717 %e A274343 10: 8022 1989 %e A274343 11: 1062347 3187041 %e A274343 12: 16055 6605027 77571 %e A274343 13: 11685817 1062347 %e A274343 14: 2002524095 4405553009 249951 %e A274343 15: 497705 155409680283 11559397707 %e A274343 16: 1123416017295 74894401153 114727509 %e A274343 17: 5643476995 409716429837 10158258591 %e A274343 ... %e A274343 row n = 18: 909705199 233400836858808047 190964321066297493 18394643943, %e A274343 row n = 19: 34825896536145 229850917138557 17096349208653, %e A274343 row n = 20: 357856262339147 24291640943843637507 602272089516784401 174041631153. %e A274343 ... %e A274343 For the rationals r(n), n = 2..20, see A274342. %Y A274343 Cf. A274342. %K A274343 nonn,tabf,frac,easy %O A274343 2,3 %A A274343 _Wolfdieter Lang_, Jun 20 2016