cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274346 Denominators of coefficients in the expansion of (log(q) - log(k^2/16))/(8*k^2/16) in powers of k^2/16, where q is the Jacobi nome and k^2 the parameter of elliptic functions.

This page as a plain text file.
%I A274346 #12 Jul 01 2016 13:37:12
%S A274346 1,2,3,4,5,3,7,8,9,5,11,3,13,7,15,16,17,9,19,5,21,11,23,3,25,1,27,7,
%T A274346 29,3,31,32,33,17,35,9,37,19,39,5,41,21,43,11,9,23,47,6,49,25,51,13,
%U A274346 53,27,55,7,57,29,59,15,61,31,63,64,1,33,67,17,3,35,71,9,73,37,75,19,11,39,79,10
%N A274346 Denominators of coefficients in the expansion of (log(q) - log(k^2/16))/(8*k^2/16) in powers of k^2/16, where q is the Jacobi nome and k^2 the parameter of elliptic functions.
%C A274346 The numerators are given in A274345, where also details and the first rationals are given.
%C A274346 The Mathematica program below gives the rationals r(n-1), n = 1..50.
%F A274346 a(n) = denominator(A227503(n+1)/(n+1)),  n >= 0.
%F A274346 (log(q) - log(k^2/16))/(8*k^2/16) = Sum_{n >= 0} (A274345(n)/a(n))*(k^2/16)^n.
%t A274346 Table[SeriesCoefficient[Log[EllipticNomeQ[16 x]/x]/8, {x, 0, n}], {n, 1, 50}] // Denominator (* _Vaclav Kotesovec_, Jun 30 2016 *)
%Y A274346 Cf. A227503, A274345.
%K A274346 nonn,easy,frac
%O A274346 0,2
%A A274346 _Wolfdieter Lang_, Jun 30 2016
%E A274346 More terms from _Vaclav Kotesovec_, Jun 30 2016