cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A274353 Number of factors L(i) > 1 of A274280(n), where L = A000032 (Lucas numbers, 1,3,4,...)

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 1, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 2, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 3, 3, 2, 3, 3, 2, 2, 1, 2, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2016

Keywords

Examples

			The products of distinct Lucas numbers, arranged in increasing order, comprise A274280.  The list begins with 1, 3, 4, 7, 11, 12 = 3*4, so that a(6) = 2.
		

Crossrefs

Programs

  • Mathematica
    r[1] := 1; r[2] := 3; r[n_] := r[n] = r[n - 1] + r[n - 2];
    s = {1}; z = 40; f = Map[r, Range[z]]; Take[f, 10]
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    infQ[n_] := MemberQ[f, n];
    a = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
    Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &,
    Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 200}];
    ans = Join[{{1}}, a]; Take[ans, 8]
    w = Map[Length, ans] (* A274353 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274347 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274348 *)
    (* Peter J. C. Moses, Jun 17 2016 *)
Showing 1-1 of 1 results.